Friedrich O. Huck

Learn More
Viking 2 lander began imaging the surface of Mars at Utopia Planitia on 3 September 1976. The surface is a boulder-strewn reddish desert cut by troughs that probably form a polygonal network. A plateau can be seen to the east of the spacecraft, which for the most probable lander location is approximately the direction of a tongue of ejecta from the crater(More)
The first photographs ever returned from the surface of Mars were obtained by two facsimile cameras aboard the Viking 1 lander, including black-and-white and color, 0.12 degrees and 0.04 degrees resolution, and monoscopic and stereoscopic images. The surface, on the western slopes of Chtyse Planitia, is a boulder-strewn deeply reddish desert, with distant(More)
This paper deals with the extension of information theory to the assessment of visual communication from scene to observer. The mathematical development rigorously unites the electro-optical design of image gathering and display devices with the digital processing algorithms for image coding and restoration. Results show that: End-to-end system analysis(More)
An expression for the information capacity of the optical-mechanical line-scan imaging process is derived, which includes the effects of blurring of spatial detail, photosensor noise, aliasing, and quantization. Both the information capacity for a fixed data density and the information efficiency (i.e., the ratio of information capacity to data density)(More)
Drifts of fine-grained sediment are present in the vicinity of the Viking 1 lander. Many drifts occur in the lees of large boulders. Morphologic analysis indicates that the last dynamic event was one of general deflation for at least some drifts. Particle cohesion implies that there is a distinct small-particle upturn in the threshold velocity-particle size(More)