Friedrich J. Behringer

Learn More
The effect of red (R) and far-red (FR) light on stem elongation and indole-3-acetic acid (IAA) levels was examined in dwarf and tallPisum sativum L. seedlings. Red light reduced the extension-growth rate of etiolated seedlings by 70–90% after 3 h, and this inhibition was reversible by FR. Inhibition occurred throughout the growing zone. After 3 h of R, the(More)
Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene.(More)
Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive(More)
Red light causes a reduction in the extension growth of dark-grown seedlings. The involvement of gibberellin in this process was tested by screening a number of gibberellin synthesis and gibberellin response mutants of Pisum sativum L. for the kinetic response of stem growth inhibition by red light. Gibberellin deficient dwarfs, produced by mutant alleles(More)
The lz-2 mutation in tomato (Lycopersicon esculentum) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore(More)
In plant development, leaf primordia are formed on the flanks of the shoot apical meristem in a highly predictable pattern. The cells that give rise to a primordium are sequestered from the apical meristem. Maintenance of the meristem requires that these cells be replaced by the addition of new cells. Despite the central role of these activities in(More)
 Cell division and cell differentiation are key processes in shoot development. The Arabidopsis thaliana (L.) Heynh. SCHIZOID (SHZ) gene appears to influence cell differentiation and cell division in the shoot. The shz-2 mutant is notable in that distinct phenotypes develop, depending on the environment in which the plants are grown. When shz-2 mutants are(More)
Arabidopsis mutants generated by insertion of the T-DNA from Ti plasmid 3850∶1003 serve as a starting point for the isolation of novel genes. The disrupted plant DNA can be recovered using a plasmid rescue technique utilizing high efficiency electroporation. Rescued plasmids are resistant to ampicillin and contain an origin of replication from pBR322.(More)
The stem elongation responses of etiolated peas (Pisum sativum L.) to fluorescent light (35–45 μ were recorded using high resolution position transducers. Continuous fluorescent light decreased growth by 70% within 9 min. The growth rate declined to 5% of the control over the next 2 h and remained at this level for 7 h. Pulses of fluorescent(More)
Mutation of the Lazy-2 (Lz-2) gene in tomato (Lycopersicon esculentum mill.) produces a phytochrome-dependent reversal of shoot gravitropism, providing a unique genetic resource for investigating how signals from light modulate gravitropism. We mapped the Lz-2 gene using RFLPs and a PCR-based technique to assess the feasibility of positional cloning.(More)
  • 1