Friederike U. Hohlefeld

Learn More
In Parkinson's disease (PD) levodopa-associated changes in the power and long-range temporal correlations of beta oscillations have been demonstrated, yet the presence and modulation of genuine connectivity in local field potentials (LFP) recorded from the subthalamic nucleus (STN) remains an open question. The present study investigated LFP recorded(More)
Brain-Computer Interfaces can suffer from a large variance of the subject conditions within and across sessions. For example vigilance fluctuations in the individual , variable task involvement, workload etc. alter the characteristics of EEG signals and thus challenge a stable BCI operation. In the present work we aim to define features based on a variant(More)
Parkinson's disease (PD) is characterized by widespread neural interactions in cortico-basal-ganglia networks primarily in beta oscillations (approx. 10-30 Hz), as suggested by previous findings of levodopa-modulated interhemispheric coherence between the bilateral subthalamic nuclei (STN) in local field potential recordings (LFPs). However, due to(More)
We introduce quasi-movements and define them as volitional movements which are minimized by the subject to such an extent that finally they become undetectable by objective measures. They are intended as overt movements, but the absence of the measurable motor responses and the subjective experience make quasi-movements similar to motor imagery. We used the(More)
Previous neuroimaging studies based on neurovascular coupling have shown that stroke affects both, strength and spatial extent of brain activation during upper limb movements. Here, we investigated the sub-second amplitude dynamics of a direct neuronal measure, i.e., event-related desynchronization (ERD) of EEG oscillations during finger movements, in(More)
Neuronal activity in the subthalamic nucleus (STN) of patients with Parkinson's disease (PD) is characterised by excessive neuronal synchronization, particularly in the beta frequency range. However, less is known about the temporal dynamics of neuronal oscillations in PD. In this respect long-range temporal correlations (LRTC) are of special interest as(More)
In everyday life one may encounter both unpredictable and self-initiated, hence anticipated, events. Here, we analyzed the effects of self-initiated auditory stimulus presentation on P3 and N2 components in an oddball paradigm. If the stimulus sequence was fully self-determined, both components were attenuated in comparison with computer-controlled(More)
Overt and covert movements (e.g., motor imagery) have been frequently demonstrated to engage common neuronal substrates in the motor system. However, it is an open question whether this similarity is also present during early stages of stimulus-processing. We utilized the high temporal resolution of multi-channel electroencephalography (EEG) in order to(More)
'Repetition suppression' (RS) denotes the decrease of neural responses to repeated external sensory stimuli. We showed that RS can be also triggered by internal processes alone. When individuals perform repetitive covert movements, that is, motor imagery or quasi-movements, both of which are associated with pericentral cortical activity without muscle(More)
Although thalamic deep brain stimulation is an effective treatment for patients with essential tremor, little is known about its effect on cortical neural dynamics. Therefore, we investigated long-range temporal correlations and spectral power in electroencephalographic recordings of patients during OFF versus ON bilateral thalamic deep brain stimulation in(More)