Friederike Knerlich-Lukoschus

Learn More
Spinal cord injury (SCI) often results in intractable chronic central pain syndromes. Recently chemokines such as CCL2 were identified as possible key integrators of neuropathic pain and inflammation after peripheral nerve lesion. The focus of the current study was the investigation of time-dependent CCL2 and CCR2 expression in relation to central(More)
OBJECT Central neuropathic pain is a frequent challenging complication after spinal cord injury (SCI), and specific therapeutic approaches remain elusive. The purpose of the present investigations was to identify potential key mediators of these pain syndromes by analyzing detailed expression profiles of important chemokines in an experimental SCI paradigm(More)
Inflammatory cascades induced by spinal cord injuries (SCI) are localized in the white matter, a recognized neural stem- and progenitor-cell (NSPC) niche of the adult spinal cord. Chemokines, as integrators of these processes, might also be important determinants of this NSPC niche. CCL3/CCR1, CCL2/CCR2, and SDF-1alpha/CXCR4 were analyzed in the(More)
Due to their involvement in neuro-modulatory processes, the endogenous cannabinoid system and chemokine network, which were shown to interact which each other, are potential key elements in the cascades underlying central neuropathic pain development after spinal cord injury (SCI). Expression profiles of cannabinoid receptor type-1 (CB(1)), and of the(More)
Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF) family ligands (GFL) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson's disease. However, little is known about direct influences of the GFL on microglia function, which are known to express part of the GDNF(More)
The existence of endogenous neural progenitor cells (NPCs) in the adult spinal cord (sc) provides the potential for tailored repair therapies after spinal cord injury (SCI). This study investigates the impact of inflammatory mediators on properties of NPC cultures derived from adult rats after SCI. The Infinite Horizon impactor was used to apply 200-kdyn(More)
Hypoxemic respiratory failure of the neonatal organism involves increased acid sphingomyelinase (aSMase) activity and production of ceramide, a second messenger of a pro-inflammatory pathway that promotes increased vascular permeability, surfactant alterations and alveolar epithelial apoptosis. We comparatively assessed the benefits of topical aSMase(More)
OBJECTIVE Focal cortical dysplasia (FCD) Type II is divided into 2 subgroups based on the absence (IIA) or presence (IIB) of balloon cells. In particular, extratemporal FCD Type IIA and IIB is not completely understood in terms of clinical, imaging, biological, and neuropathological differences. The aim of the authors was to analyze distinctions between(More)
Myelomeningoceles (mmc) are clinically challenging CNS malformations. Although improvement in their management has been achieved with respect to antenatal diagnosis, prevention, and fetal surgery, the cellular mechanisms of damage in the neural placode are poorly understood. We aimed to identify cellular and molecular factors in lesion amplifying cascades(More)
Spinal cord injury (SCI) results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis(More)