Friedemann Kaiser

Cornelia Denz6
Kristian Motzek6
Martin Gassel4
6Cornelia Denz
6Kristian Motzek
4Martin Gassel
Learn More
Starting with a subexcitable net of FitzHugh-Nagumo elements it is shown that parameter variability (diversity) is able to induce pattern formation. These patterns are most coherent for an intermediate variability strength. This effect is similar to the well-known spatiotemporal stochastic resonance generated by additive noise in subexcitable media.(More)
The influence of variability on the response of a net of bistable FitzHugh-Nagumo elements to a weak signal is investigated. The response of the net undergoes a resonancelike behavior due to additive variability. For an intermediate strength of additive variability the external signal is optimally enhanced in the output of the net (diversity-induced(More)
Leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie show overt circadian rhythms in net CO2 uptake, leaf conductance to water and intercellular CO2 concentration, which are entrained by periodic temperature cycles. To probe their sensitivity to thermoperiodic perturbations, intact leaves were exposed(More)
Starting with an oscillatory net of neural elements, increasing variability induces a phase transition to excitability. This transition is explained by a systematic effect of the variability, which stabilizes the formerly unstable, spatially uniform, temporally constant solution of the net. Multiplicative noise may also influence the net in a systematic way(More)
We demonstrate numerically that partially incoherent light can be trapped in the spectral band gaps of a photonic lattice, creating partially incoherent multi-component spatial optical solitons in a self-defocusing nonlinear periodic medium. We find numerically such incoherent multi-gap optical solitons and discuss how to generate them in experiment by(More)
We realize an experimental control over the topological stability of three-lobe discrete vortex solitons by modifying the symmetry of a hexagonal photonic lattice optically induced in a photorefractive crystal. By continuously deforming the lattice wave in one transverse direction, we manipulate the coupling between lattice sites and induce or inhibit the(More)
The influence of time-delayed feedback on pattern formation in subexcitable media represented by a net of FitzHugh-Nagumo elements, a minimal model of neuronal dynamics, is studied. Without feedback, wave fronts die out after a short propagation length (subexcitable net dynamics). Applying time-delayed feedback with appropriate feedback parameters, pattern(More)
We report on the first observation of topologically stable spatially localized multivortex solitons generated in optically induced hexagonal photonic lattices. We demonstrate that topological stabilization of such nonlinear localized states can be achieved through self-trapping of truncated two-dimensional Bloch waves and confirm our experimental results by(More)
We report a noise-memory induced phase transition in an array of oscillatory neural systems, which leads to the suppression of synchronous oscillations and restoration of excitable dynamics. This phenomenon is caused by the systematic contributions of temporally correlated parametric noise, i.e., possessing a memory, which stabilizes a deterministically(More)
We experimentally observed a counterpropagating dipole-mode vector soliton in a photorefractive SBN:60Ce crystal. We investigated the transient formation dynamics and show that the formation process differs significantly from the copropagating geometry. The experimental results are compared with fully anisotropic numerical simulations and show good(More)