Friedemann Kaiser

Learn More
We report a study of the 3E excited-state structure of single negatively charged nitrogen-vacancy (NV) defects in diamond, combining resonant excitation at cryogenic temperatures and optically detected magnetic resonance. A theoretical model is developed and shows excellent agreement with experimental observations. In addition, we show that the two orbital(More)
We report a versatile method to polarize single nuclear spins in diamond, based on optical pumping of a single nitrogen-vacancy (NV) defect and mediated by a level anticrossing in its excited state. A nuclear-spin polarization higher than 98% is achieved at room temperature for the 15N nuclear spin associated with the NV center, corresponding to microK(More)
Spatiotemporal stochastic resonance (STSR) is a phenomenon, where the stability of spatial patterns in an extended dynamical system displays a resonance-type dependence on the noise amplitude with the patterns being optimal at intermediate noise level. This dynamical behavior has been found in theoretical systems as well as in biochemical processes, where(More)
In this work, we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements to enhance the collection efficiency from a single emitter. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of(More)
Dynamic patchiness of photosystem II (PSII) activity in leaves of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier, which was independent of stomatal control and was observed during both the day/night cycle and circadian endogenous oscillations of CAM, was previously explained by lateral CO2 diffusion and CO2 signalling(More)
Starting with a subexcitable net of FitzHugh-Nagumo elements it is shown that parameter variability (diversity) is able to induce pattern formation. These patterns are most coherent for an intermediate variability strength. This effect is similar to the well-known spatiotemporal stochastic resonance generated by additive noise in subexcitable media.(More)
We realize an experimental control over the topological stability of three-lobe discrete vortex solitons by modifying the symmetry of a hexagonal photonic lattice optically induced in a photorefractive crystal. By continuously deforming the lattice wave in one transverse direction, we manipulate the coupling between lattice sites and induce or inhibit the(More)
In continuous light, leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier exhibit a circadian rhythm of CO2 uptake, stomatal conductance and leaf-internal CO2 pressure. According to a current quantitative model of CAM, the pacemaking mechanism involves periodic turgor-related tension and relaxation of the(More)
Leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie show overt circadian rhythms in net CO2 uptake, leaf conductance to water and intercellular CO2 concentration, which are entrained by periodic temperature cycles. To probe their sensitivity to thermoperiodic perturbations, intact leaves were exposed(More)
We discuss the influence of additive, spatiotemporally correlated (i.e., colored) noise on pattern formation in a two-dimensional network of excitable systems. The signature of spatiotemporal stochastic resonance (STSR) is analyzed using cross-correlation and information theoretic measures. It is found that the STSR behavior is affected by both the spatial(More)