Frerich J. Keil

Learn More
Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package,(More)
The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q2 between 150 and 30 000 GeV2 and with Bjorken x between 0:0032 and 0:65 are measured in e+p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated(More)
The reaction mechanism for nitrous oxide decomposition has been studied on hydrated and dehydrated mononuclear iron sites in Fe-ZSM-5 using density functional theory. In total, 46 different surface species with different spin states (spin multiplicity M(S) = 4 or 6) and 63 elementary reactions were considered. Heats of adsorption, activation barriers,(More)
The influence of silicalite-1 pores on the reaction equilibria and the selectivity of the propene metathesis reaction system in the temperature range between 300 and 600 K and the pressure range from 0.5 to 7 bars has been investigated with molecular simulations. The reactive Monte Carlo (RxMC) technique was applied for bulk-phase simulations in the(More)
The alkylation of benzene by ethene over H-ZSM-5 is analyzed by means of a hybrid MP2:DFT scheme. Density functional calculations applying periodic boundary conditions (PBE functional) are combined with MP2 energy calculations on a series of cluster models of increasing size which allows extrapolation to the periodic MP2 limit. Basis set truncation errors(More)
To build an effective barrier against the penetration of extrinsic agents is one of the skin's main functions. The barrier properties of the stratum corneum and the epidermis have been subject to extensive studies in the past while the role of skin appendages as possible pathways of penetration are only rarely described. In order to study the possible(More)
During the last 50 years extensive experimental investigation has been carried out on the chemical effects of ultrasound, but limited work has been reported on modeling. This paper presents a new model in which a numerical calculation of the three-dimensional linear sound pressure field distribution in a commonly used sonoreactor containing three(More)
The goal of multiscale modelling of heterogeneous catalytic reactors is the prediction of all steps, starting from the reaction mechanism at the active centre, the rates of reaction, adsorption and diffusion processes inside the porous system of the catalyst support, based on first principles, quantum chemistry, force field simulations and macroscopic(More)
A combination of interpolation methods and local saddle-point search algorithms is probably the most efficient way of finding transition states in chemical reactions. Interpolation methods such as the growing-string method and the nudged-elastic band are able to find an approximation to the minimum-energy pathway and thereby provide a good initial guess for(More)
The influence of flexible walls on the self-diffusion of CH4 in an isolated single walled carbon nanotube, as an example, is studied by molecular dynamics simulations. By simulating the carbon nanotube as a flexible framework we demonstrate that the flexibility has a crucial influence on self-diffusion at low loadings. We show how this influence can be(More)