Learn More
In neurons, neurogranin (Ng) binds calmodulin (CaM), and its binding affinity is reduced by increasing Ca2+, phosphorylation by PKC, or oxidation by oxidants. Ng concentration in the hippocampus of adult mice varied broadly (Ng+/+, 160-370 and Ng+/-, approximately 70-230 pmol/mg); the level in Ng+/+ mice is one of the highest among all neuronal CaM-binding(More)
Neurogranin/RC3 is a protein that binds calmodulin and serves as a substrate for protein kinase C. Neuronally distributed in the hippocampus and forebrain, neurogranin is highly expressed in dendritic spines of hippocampal pyramidal cells, implicating this protein in long-term potentiation and in learning and memory processes. Null mutation of the(More)
Neurogranin/RC3 is a neural-specific Ca(2+)-sensitive calmodulin (CaM)-binding protein whose CaM-binding affinity is modulated by phosphorylation and oxidation. Here we show that deletion of the Ng gene in mice did not result in obvious developmental or neuroanatomical abnormalities but caused an impairment of spatial learning and changes in hippocampal(More)
Environmental enrichment is known to enhance hippocampal neurogenesis and cognitive functions. Neurogranin (Ng), a specific substrate of protein kinase C (PKC), is abundantly expressed in brain regions important for cognitive functions. Deletion of Ng in mice causes severe deficits in spatial learning and long-term potentiation (LTP) in the hippocampal CA1(More)
Neurogranin (Ng) is a brain-specific, postsynaptically located protein kinase C (PKC) substrate, highly expressed in the cortex, hippocampus, striatum, and amygdala. This protein is a Ca(2+)-sensitive calmodulin (CaM)-binding protein whose CaM-binding affinity is modulated by phosphorylation and oxidation. To investigate the role of Ng in neural function, a(More)
Involvement of an L-type Ca2+ channel in the regulation of spontaneous transmitter release was studied in Xenopus nerve-muscle cultures. The frequency of spontaneous synaptic currents, which reflects impulse-independent acetylcholine release from the nerve terminals, showed a marked increase in high-K+ medium or after treatment with a phorbol ester,(More)
We have previously identified three types of protein kinase C (a Ca2+-activated phospholipid-dependent kinase) isozymes, designated types I, II, and III, from rat brain (Huang, K.-P., Nakabayashi, H., and Huang, F. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8535-8539). These enzymes are different in their elution profile from hydroxylapatite column,(More)
Protein kinase C (PKC) enzyme family consists of the Ca(2+)-dependent and -independent subgroups of phospholipid/diacylglycerol (DAG)-stimulated serine/threonine protein kinases. These enzymes exhibit distinct cellular and subcellular localizations in CNS and subtle differences in their biochemical characteristics and substrate specificities. It is believed(More)
Neurogranin (Ng), a PKC substrate, is abundantly expressed in brain regions important for cognitive functions. Deletion of Ng caused severe deficits in spatial learning and LTP in the hippocampal CA1 region of mice. These Ng-/- mice also exhibit deficits in the amplification of their hippocampal signaling pathways critical for learning and memory. A(More)
Previously we showed that protein kinase C (PKC) isozymes (types I, II, and III) have distinctive neuronal localizations in cerebellum. In the present study, we followed the different appearances of these isozymes during the postnatal development of cerebellum. By immunoblot analysis, type I PKC was found to be low within 2 weeks after birth; an abrupt(More)