Fredrik Lundh

Learn More
Membrane transport systems active in cellular inorganic phosphate (Pi) acquisition play a key role in maintaining cellular Pi homeostasis, independent of whether the cell is a unicellular microorganism or is contained in the tissue of a higher eukaryotic organism. Since unicellular eukaryotes such as yeast interact directly with the nutritious environment,(More)
In Saccharomyces cerevisiae, phosphate uptake is mainly dependent on the proton-coupled Pho84 permease under phosphate-limited growth conditions. Phosphate addition causes Pho84-mediated activation of the protein kinase A (PKA) pathway as well as rapid internalization and vacuolar breakdown of Pho84. We show that Pho84 undergoes phosphate-induced(More)
The Na(+)-coupled, high-affinity Pho89 plasma membrane phosphate transporter in Saccharomyces cerevisiae has so far been difficult to study because of its low activity and special properties. In this study, we have used a pho84Deltapho87Deltapho90Deltapho91Delta quadruple deletion strain of S. cerevisiae devoid of all transporter genes specific for(More)
In this study, the putative anion transporter 1 (ANTR1) from Arabidopsis thaliana was shown to be localized to the chloroplast thylakoid membrane by Western blotting with two different peptide-specific antibodies. ANTR1 is homologous to the type I of mammalian Na+-dependent inorganic phosphate (Pi) transporters. The function of ANTR1 as a Na+-dependent Pi(More)
To present the experience of a tertiary referral hospital in the management of a case series with hip or knee fractures by using modular megaprosthesis. Seventeen consecutive patients with highly comminuted fractures of the knee (n = 2), periprosthetic fractures of knee (n = 10) or hip (n = 5) were included. Fractures were managed with modular(More)
BACKGROUND Cervical total disc replacement (CTDR) is an alternative to anterior fusion. Therefore, it is desirable to have an accurate in vivo measurement of prosthetic kinematics and assessment of implant stability relative to the adjacent vertebrae. PURPOSE To devise an in vivo CT-based method to analyze the kinematics of cervical total disc(More)
  • 1