Fredrick A. Jenet

Learn More
Using a statistically rigorous analysis method, we place limits on the existence of an isotropic stochastic gravitational wave background using pulsar timing observations. We consider backgrounds whose characteristic strain spectra may be described as a power-law dependence with frequency. Such backgrounds include an astrophysical background produced by(More)
The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32◦ 77◦ and 168◦ 214◦) close to the Galactic plane (|b| 5◦) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo’s unrivaled(More)
Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we(More)
The direct detection of gravitational waves is a major goal of current astrophysics. We provide details of a new method for detecting a stochastic background of gravitational waves using pulsar timing data. Our results show that regular timing observations of 40 pulsars each with a timing accuracy of 100 ns will be able to make a direct detection of the(More)
Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's(More)
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared(More)
The study of radio pulsars at the highest time resolution is currently limited by the capability of the signal detection system to accept a wide-bandwidth signal, and to sample the data rapidly enough. We describe a new instrument for pulsar research which utilizes baseband recording at 400 Mbit/s to achieve both high bandwidth and highs sustained data(More)
1 Summary The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) is a consortium of astronomers whose goal is the creation of a galactic scale gravitational wave observatory sensitive to gravitational waves in the nHz – µHz band. It is just one component of an international collaboration involving similar organizations of European and(More)