Frederik T. Hansen

Learn More
Antimicrobial peptides are a new class of antibiotics that are promising for pharmaceutical applications because they have retained efficacy throughout evolution. One class of antimicrobial peptides are the defensins, which have been found in different species. Here we describe a new fungal defensin, eurocin. Eurocin acts against a range of Gram-positive(More)
Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework for future polyketide synthases (PKSs) and nonribosomal(More)
Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum(More)
Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster specific transcription factors. We have developed a system in(More)
Fusarin C is a mycotoxin produced by several Fusarium species and has been associated with esophageal cancer due to its carcinogenic effects. Here, we report that fusarin C stimulates growth of the breast cancer cell line MCF-7. This suggests that fusarin C can act as an estrogenic agonist and should be classified as a mycoestrogen. MCF-7 cells were(More)
The plant pathogen Fusarium graminearum is the infamous cause of Fusarium head blight worldwide resulting in significant losses of yield and reduced grain feed quality. It also has the potential to produce a range of small bioactive peptides produced by the non ribosomal peptide synthetases (NRPSs). Most of these are unknown as F. graminearum contains 19(More)
The A/T-rich interaction domain (ARID) and the HMG-box domain represent DNA-interaction modules that are found in sequence-specific as well as nonsequence-specific DNA-binding proteins. Both domains are found in a variety of DNA-interacting proteins in a wide range of eukaryotic organisms. Proteins that contain both an ARID and an HMG-box domain, here(More)
The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7 in F. graminearum and NRPS32 in F. pseudograminearum. By(More)
Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate knockout mutants of two candidate non-ribosomal peptide(More)
MOTIVATION By using a class of large modular enzymes known as Non-Ribosomal Peptide Synthetases (NRPS), bacteria and fungi are capable of synthesizing a large variety of secondary metabolites, many of which are bioactive and have potential, pharmaceutical applications as e.g. antibiotics. There is thus an interest in predicting the compound synthesized by(More)
  • 1