Frederik Ruelens

Learn More
—A demand response aggregator, that manages a large cluster of heterogeneous flexibility carriers, faces a complex optimal control problem. Moreover, in most applications of demand response an exact description of the system dynamics and constraints is unavailable, and information comes mostly from observations of system trajectories. This paper presents a(More)
—Driven by recent advances in batch Reinforcement Learning (RL), this paper contributes to the application of batch RL to demand response. In contrast to conventional model-based approaches, batch RL techniques do not require a system identification step, which makes them more suitable for a large-scale implementation. This paper extends fitted Q-iteration,(More)
Driven by the opportunity to harvest the flexibility related to building climate control for demand response applications, this work presents a data-driven control approach building upon recent advancements in reinforcement learning. More specifically, model-assisted batch reinforcement learning is applied to the setting of building climate control(More)
The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an(More)
Optimal control of thermostatically controlled loads connected to a district heating network is considered a sequential decision-making problem under uncertainty. The practicality of a direct model-based approach is compromised by two challenges, namely scalability due to the large dimensionality of the problem and the system identification required to(More)