Frederik Ruelens

Learn More
—A demand response aggregator, that manages a large cluster of heterogeneous flexibility carriers, faces a complex optimal control problem. Moreover, in most applications of demand response an exact description of the system dynamics and constraints is unavailable, and information comes mostly from observations of system trajectories. This paper presents a(More)
—Driven by recent advances in batch Reinforcement Learning (RL), this paper contributes to the application of batch RL to demand response. In contrast to conventional model-based approaches, batch RL techniques do not require a system identification step, which makes them more suitable for a large-scale implementation. This paper extends fitted Q-iteration,(More)
Driven by the opportunity to harvest the flexibility related to building climate control for demand response applications, this work presents a data-driven control approach building upon recent advancements in reinforcement learning. More specifically, model-assisted batch reinforcement learning is applied to the setting of building climate control(More)
The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an(More)
—Direct load control of a heterogeneous cluster of residential demand flexibility sources is a high-dimensional control problem with partial observability. This work proposes a novel approach that uses a convolutional neural network to extract hidden state-time features to mitigate the curse of partial observability. More specific, a convolutional neural(More)
—Electric water heaters have the ability to store energy in their water buffer without impacting the comfort of the end user. This feature makes them a prime candidate for residential demand response. However, the stochastic and non-linear dynamics of electric water heaters, makes it challenging to harness their flexibility. Driven by this challenge, this(More)