Learn More
PI-Scel is a bifunctional yeast protein that propagates its mobile gene by catalyzing protein splicing and site-specific DNA double-strand cleavage. Here, we report the 2.4 A crystal structure of the PI-Scel protein. The structure is composed of two separate domains (I and II) with novel folds and different functions. Domain I, which is elongated and formed(More)
Persistence of a mobile DNA element in a population reflects a balance between the ability of the host to eliminate the element and the ability of the element to survive and to disseminate to other individuals. In each of the three biological kingdoms, several families of a mobile DNA element have been identified which encode a single protein that acts on(More)
I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic(More)
A structure-based model describing the interaction of the two-domain PI-SceI endonuclease with its 31-base pair DNA substrate suggests that the endonuclease domain (domain II) contacts the cleavage site region of the substrate, while the protein splicing domain (domain I) interacts with a distal region that is sufficient for high affinity binding. To(More)
The PI-SceI protein is an intein-encoded homing endonuclease that initiates the mobility of its gene by making a double strand break at a single site in the yeast genome. The PI-SceI protein splicing and endonucleolytic active sites are separately located in each of two domains in the PI-SceI structure. To determine the spatial relationship between bases in(More)
An unusual protein splicing reaction joins the N-terminal segment (A) and the C-terminal segment (C) of the 119K primary translation product (ABC) of the yeast VMA1 gene to yield a 69K vacuolar H(+)-ATPase subunit (AC) and an internal 50K polypeptide (B). This 50K protein is a site-specific DNA endonuclease that shares 34% identity with the homothallic(More)
Superposition of the PI-SceI and I-CreI homing endonuclease three-dimensional x-ray structures indicates general similarity between the I-CreI homodimer and the PI-SceI endonuclease domain. Saddle-shaped structures are present in each protein that are proposed to bind DNA. At the putative endonucleolytic active sites, the superposition reveals that two(More)
In somatic mammalian cells, homologous recombination is a rare event. To study the effects of chromosomal breaks on frequency of homologous recombination, site-specific endonucleases were introduced into human cells by electroporation. Cell lines with a partial duplication within the HPRT (hypoxanthine phosphoribosyltransferase) gene were created through(More)
The PI-SceI protein from Saccharomyces cerevisiae is a member of the LAGLIDADG family of homing endonucleases that have been used in genomic engineering. To assess the flexibility of the PI-SceI-binding interaction and to make progress towards the directed evolution of homing endonucleases that cleave specified DNA targets, we applied a two-hybrid method to(More)