Learn More
PI-Scel is a bifunctional yeast protein that propagates its mobile gene by catalyzing protein splicing and site-specific DNA double-strand cleavage. Here, we report the 2.4 A crystal structure of the PI-Scel protein. The structure is composed of two separate domains (I and II) with novel folds and different functions. Domain I, which is elongated and formed(More)
Persistence of a mobile DNA element in a population reflects a balance between the ability of the host to eliminate the element and the ability of the element to survive and to disseminate to other individuals. In each of the three biological kingdoms, several families of a mobile DNA element have been identified which encode a single protein that acts on(More)
I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic(More)
An unusual protein splicing reaction joins the N-terminal segment (A) and the C-terminal segment (C) of the 119K primary translation product (ABC) of the yeast VMA1 gene to yield a 69K vacuolar H(+)-ATPase subunit (AC) and an internal 50K polypeptide (B). This 50K protein is a site-specific DNA endonuclease that shares 34% identity with the homothallic(More)
In somatic mammalian cells, homologous recombination is a rare event. To study the effects of chromosomal breaks on frequency of homologous recombination, site-specific endonucleases were introduced into human cells by electroporation. Cell lines with a partial duplication within the HPRT (hypoxanthine phosphoribosyltransferase) gene were created through(More)
The PI-SceI protein from Saccharomyces cerevisiae is a member of the LAGLIDADG family of homing endonucleases that have been used in genomic engineering. To assess the flexibility of the PI-SceI-binding interaction and to make progress towards the directed evolution of homing endonucleases that cleave specified DNA targets, we applied a two-hybrid method to(More)
PI-SceI, a double-stranded DNA endonuclease from Saccharomyces cerevisiae, is generated by protein splicing of an intein, which is an internal polypeptide within a larger precursor protein. The enzyme initiates the mobility of the intein by cleaving at inteinless alleles of the VMA1 gene. Genetic and biochemical studies reveal that the enzyme makes numerous(More)
The first X-ray structures of an intein-DNA complex, that of the two-domain homing endonuclease PI-SceI bound to its 36-base pair DNA substrate, have been determined in the presence and absence of Ca(2+). The DNA shows an asymmetric bending pattern, with a major 50 degree bend in the endonuclease domain and a minor 22 degree bend in the splicing domain(More)
A structure-based model describing the interaction of the two-domain PI-SceI endonuclease with its 31-base pair DNA substrate suggests that the endonuclease domain (domain II) contacts the cleavage site region of the substrate, while the protein splicing domain (domain I) interacts with a distal region that is sufficient for high affinity binding. To(More)