Frederick S Buckner

Learn More
A new drug screening method was devised utilizing Trypanosoma cruzi cells that express the Escherichia coli beta-galactosidase gene. Transfected parasites catalyze a colorimetric reaction with chlorophenol red beta-D-galactopyranoside as substrate. Parasite growth in the presence of drugs in microtiter plates was quantitated with an enzyme-linked(More)
New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm(More)
PURPOSE OF REVIEW The need for better drugs to treat patients with Chagas disease remains urgent. This review summarizes the advancements in drug development over the past 2 years. RECENT FINDINGS Drug development efforts are almost exclusively occurring as preclinical research, although phase II studies for the antifungal drug, posaconazole, and a(More)
Protein prenylation occurs in the protozoan that causes African sleeping sickness (Trypanosoma brucei), and the protein farnesyltransferase appears to be a good target for developing drugs. We have cloned the alpha- and beta-subunits of T. brucei protein farnesyltransferase (TB-PFT) using nucleic acid probes designed from partial amino acid sequences(More)
Development of a safe, effective, and inexpensive therapy for African trypanosomiasis is an urgent priority. In this study, we evaluated the validity of Trypanosoma brucei glycogen synthase kinase 3 (GSK-3) as a potential drug target. Interference with the RNA of either of two GSK-3 homologues in bloodstream-form T. brucei parasites led to growth arrest and(More)
Nucleotide biosynthesis pathways have been reported to be essential in some protozoan pathogens. Hence, we evaluated the essentiality of one enzyme in the pyrimidine biosynthetic pathway, dihydroorotate dehydrogenase (DHODH) from the eukaryotic parasite Trypanosoma brucei through gene knockdown studies. RNAi knockdown of DHODH expression in bloodstream form(More)
To guide development of new drugs targeting methionyl-tRNA synthetase (MetRS) for treatment of human African trypanosomiasis, crystal structure determinations of Trypanosoma brucei MetRS in complex with its substrate methionine and its intermediate product methionyl-adenylate were followed by those of the enzyme in complex with high-affinity aminoquinolone(More)
The increasing availability of genomic data for pathogens that cause tropical diseases has created new opportunities for drug discovery and development. However, if the potential of such data is to be fully exploited, the data must be effectively integrated and be easy to interrogate. Here, we discuss the development of the TDR Targets database(More)
Urea-based methionyl-tRNA synthetase inhibitors were designed, synthesized, and evaluated for their potential toward treating human African trypanosomiasis (HAT). With the aid of a homology model and a structure-activity-relationship approach, low nM inhibitors were discovered that show high selectivity toward the parasite enzyme over the closest human(More)
Purine nucleoside phosphorylases (PNPs) and uridine phosphorylases (UPs) are closely related enzymes involved in purine and pyrimidine salvage, respectively, which catalyze the removal of the ribosyl moiety from nucleosides so that the nucleotide base may be recycled. Parasitic protozoa generally are incapable of de novo purine biosynthesis; hence, the(More)