Learn More
Manipulation in immersive virtual environments is difficult partly because users must do without the haptic contact with real objects they rely on in the real world to orient themselves and their manipulanda. To compensate for this lack, we propose exploiting the one real object every user has in a virtual environment, his body. We present a unified(More)
We propose the idea of simplification envelopes for generating a hierarchy of level-of-detail approximations for a given polygonal model. Our approach guarantees that all points of an approximation are within a user-specifiable distance from the original model and that all points of the original model are within a distance from the approximation.(More)
A study by Slater, et al., [1995] indicated that naive subjects in an immersive virtual environment experience a higher subjective sense of presence when they locomote by walking-in-place (virtual walking) than when they pushbutton fly (along the floor plane). We replicated their study, adding real walking as a third condition. Our study confirmed their(More)
A common measure of the quality or effectiveness of a virtual environment (VE) is the mount of <i>presence</i> it evokes in users. Presence is often defined as the sense of <i>being there</i> in a VE. There has been much debate about the best way to measure presence, and presence researchers need, and have sought, a measure that is <b>reliable, valid,(More)
Many Virtual Environments require walking interfaces to explore virtual worlds much larger than available real-world tracked space. We present a model for generating virtual locomotion speeds from Walking-In-Place (WIP) inputs based on walking biomechanics. By employing gait principles, our model - called Gait-Understanding-Driven Walking-In-Place (GUD WIP)(More)
Manipulation in immersive virtual environments is difficult partly because users must do without the haptic contact with real objects they rely on in the real world to orient themselves and the objects they are manipulating. To compensate for this lack, I propose exploiting the one real object every user has in a virtual environment, his body. I present a(More)
One of the most disconcertingly unnatural properties of most virtual environments (VEs) is the ability of the user to pass through objects. I hypothesize that passive haptics, augmenting a high-fidelity visual virtual environment with low-fidelity physical objects, will markedly improve both sense of presence and spatial knowledge training transfer. The(More)