Frederick M. Ausubel

Learn More
There is remarkable conservation in the recognition of pathogen-associated molecular patterns (PAMPs) by innate immune responses of plants, insects and mammals. We developed an Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a(More)
A set of mapping markers have been designed for Arabidopsis thaliana that correspond to DNA fragments amplified by the polymerase chain reaction (PCR). The ecotype of origin of these amplified fragments can be determined by cleavage with a restriction endonuclease. Specifically, 18 sets of PCR primers were synthesized, each of which amplifies a single(More)
Salicylic acid (SA) mediates plant defences against pathogens, accumulating in both infected and distal leaves in response to pathogen attack. Pathogenesis-related gene expression and the synthesis of defensive compounds associated with both local and systemic acquired resistance (LAR and SAR) in plants require SA. In Arabidopsis, exogenous application of(More)
Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a(More)
We have developed a method for constructing genomic libraries enriched for telomeric DNA sequences, enabling the isolation of telomeres from higher eukaryotic organisms with large chromosomes. The method was used to clone telomeric DNA sequences from the flowering plant Arabidopsis thaliana. A. thaliana telomeres are composed primarily of tandemly repeated(More)
We show that a single clinical isolate of the human opportunistic pathogen Pseudomonas aeruginosa (strain PA14), which previously was shown to be pathogenic in mice and plants, also kills Caenorhabditis elegans. The rate of PA14-mediated killing of C. elegans depends on the composition of the agar medium on which PA14 is grown. When PA14 is grown on minimal(More)
The PMK-1 p38 mitogen-activated protein kinase pathway and the DAF-2-DAF-16 insulin signaling pathway control Caenorhabditis elegans intestinal innate immunity. pmk-1 loss-of-function mutants have enhanced sensitivity to pathogens, while daf-2 loss-of-function mutants have enhanced resistance to pathogens that requires upregulation of the DAF-16(More)
In plants, resistance to a pathogen is frequently correlated with a genetically defined interaction between a plant resistance gene and a corresponding pathogen avirulence gene. A simple model explains these gene-for-gene interactions: avirulence gene products generate signals (ligands), and resistance genes encode cognate receptors. The A. thaliana RPS2(More)
Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one(More)
Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important opportunistic human pathogen. Generally, the acquisition of genes in the form of pathogenicity islands distinguishes pathogenic isolates from nonpathogens. We therefore sequenced a highly virulent strain of P. aeruginosa, PA14, and compared it with a previously sequenced (and(More)