Learn More
Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell(More)
BACKGROUND The likelihood of distant recurrence in patients with breast cancer who have no involved lymph nodes and estrogen-receptor-positive tumors is poorly defined by clinical and histopathological measures. METHODS We tested whether the results of a reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of 21 prospectively selected genes in(More)
Statins are cholesterol-lowering drugs with pleiotropic activities including inhibition of isoprenylation reactions and reduction of signals driving cell proliferation and survival responses. The objectives of this study were to examine the effects of statins on breast cancer cells, both in vitro and in vivo, and to begin to determine their mechanism of(More)
BACKGROUND For women with ductal carcinoma in situ (DCIS) of the breast, the risk of developing an ipsilateral breast event (IBE; defined as local recurrence of DCIS or invasive carcinoma) after surgical excision without radiation is not well defined by clinical and pathologic characteristics. METHODS The Oncotype DX breast cancer assay was performed for(More)
Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially(More)
Models of bladder tumor progression have suggested that genetic alterations may determine both phenotype and clinical course. We have applied expression microarray analysis to a divergent set of bladder tumors to further elucidate the course of disease progression and to classify tumors into more homogeneous and clinically relevant subgroups. cDNA(More)
Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions.(More)
BACKGROUND Our goals are to develop a computational histopathology pipeline for characterizing tumor types that are being generated by The Cancer Genome Atlas (TCGA) for genomic association. TCGA is a national collaborative program where different tumor types are being collected, and each tumor is being characterized using a variety of genome-wide(More)
This paper compares performance of redundant representation and sparse coding against classical kernel methods for classifying histological sections. Sparse coding has been proven to be an effective technique for restoration, and has recently been extended to classification. The main issue with classification of histology sections is inherent heterogeneity(More)
PURPOSE To determine the prognostic significance of a multimarker assay incorporating expression levels of three molecular markers in primary cutaneous melanoma. EXPERIMENTAL DESIGN We assessed expression levels of NCOA3, SPP1, and RGS1 using immunohistochemical analysis in a tissue microarray cohort of 395 patients. For each marker, we identified optimal(More)