Learn More
The functional interpretation of high throughput metabolomics by mass spectrometry is hindered by the identification of metabolites, a tedious and challenging task. We present a set of computational algorithms which, by leveraging the collective power of metabolic pathways and networks, predict functional activity directly from spectral feature tables(More)
Studies of gene–environment (G × E) interactions require effective characterization of all environmental exposures from conception to death, termed the exposome. The exposome includes environmental exposures that impact health. Improved metabolic profiling methods are needed to characterize these exposures for use in personalized medicine. In the present(More)
Information-rich technologies have advanced personalized medicine, yet obstacles limit measurement of large numbers of chemicals in human samples. Current laboratory tests measure hundreds of chemicals based upon existing knowledge of exposures, metabolism and disease mechanisms. Practical issues of cost and throughput preclude measurement of thousands of(More)
Mitochondrial phenotype is complex and difficult to define at the level of individual cell types. Newer metabolic profiling methods provide information on dozens of metabolic pathways from a relatively small sample. This pilot study used "top-down" metabolic profiling to determine the spectrum of metabolites present in liver mitochondria. High resolution(More)
Detection of low abundance metabolites is important for de novo mapping of metabolic pathways related to diet, microbiome or environmental exposures. Multiple algorithms are available to extract m/z features from liquid chromatography-mass spectral data in a conservative manner, which tends to preclude detection of low abundance chemicals and chemicals(More)
Progression of Parkinson's disease (PD) is highly variable, indicating that differences between slow and rapid progression forms could provide valuable information for improved early detection and management. Unfortunately, this represents a complex problem due to the heterogeneous nature of humans in regards to demographic characteristics, genetics, diet,(More)
High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic(More)
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes. A major challenge for exposome research lies in the development of robust and affordable analytic procedures to measure the broad range of(More)
High-resolution Fourier-transform mass spectrometry (FTMS) provides important advantages in studies of metabolism because more than half of common intermediary metabolites can be measured in 10 min with minimal pre-detector separation and without ion dissociation. This capability allows unprecedented opportunity to study complex metabolic systems, such as(More)
  • 1