Frederick Grant Pearce

Learn More
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme in (S)-lysine biosynthesis and an important antibiotic target. All X-ray crystal structures solved to date reveal a homotetrameric enzyme. In order to explore the role of this quaternary structure, dimeric variants of Escherichia coli DHDPS were engineered and their properties were compared to(More)
The three-dimensional structure of the enzyme dihydrodipicolinate synthase (KEGG entry Rv2753c, EC 4.2.1.52) from Mycobacterium tuberculosis (Mtb-DHDPS) was determined and refined at 2.28 A (1 A=0.1 nm) resolution. The asymmetric unit of the crystal contains two tetramers, each of which we propose to be the functional enzyme unit. This is supported by(More)
DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike(More)
During catalysis, all Rubisco (D-ribulose-1,5-bisphosphate carboxylase/oxygenase) enzymes produce traces of several by-products. Some of these by-products are released slowly from the active site of Rubisco from higher plants, thus progressively inhibiting turnover. Prompted by observations that Form I Rubisco enzymes from cyanobacteria and red algae, and(More)
In plants and bacteria, the branch point of (S)-lysine biosynthesis is the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate, a reaction catalyzed by dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52). It has been proposed that Arg138, a residue situated at the entrance to the active site of DHDPS, is responsible for binding the carboxyl(More)
The first directed mutant of a higher plant ribulose-bisphosphate carboxylase/oxygenase (Rubisco), constructed by chloroplast transformation, is catalytically impaired but still able to support the plant's photosynthesis and growth (Whitney, S. M., von Caemmerer, S., Hudson, G. S., and Andrews, T. J. (1999) Plant Physiol. 121, 579-588). This mutant enzyme(More)
To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which(More)
Protein aggregation is important in food processing, and this work investigated the aggregation of food proteins as a source of amyloid fibrils for use in bionanotechnology. Both purified and crude mixtures of albumin proteins were denatured by heat, which caused aggregation to occur. Protein denaturation was measured by using circular dichroism(More)
DHDPS (dihydrodipicolinate synthase; EC 4.2.1.52) is the enzyme that catalyses the first unique step of lysine biosynthesis in plants and micro-organisms. As such, it has attracted much attention as a target for herbicide and anti-microbial action. DHDPS has two substrates: pyruvate and ( S )-aspartate beta-semialdehyde [( S )-ASA]. There are various(More)
In lysine biosynthesis, dihydrodipicolinate reductase (DHDPR) catalyses the formation of tetrahydrodipicolinate. Unlike DHDPR enzymes from Escherichia coli and Mycobacterium tuberculosis, which have dual specificity for both NADH and NADPH as co-factors, the enzyme from Thermotoga maritima has a significantly greater affinity for NADPH. Despite low sequence(More)