Frederic Mantlik

Learn More
UNLABELLED PET/MRI is an emerging dual-modality imaging technology that requires new approaches to PET attenuation correction (AC). We assessed 2 algorithms for whole-body MRI-based AC (MRAC): a basic MR image segmentation algorithm and a method based on atlas registration and pattern recognition (AT&PR). METHODS Eleven patients each underwent a(More)
Recent progress has allowed hybrid positron emission tomography/magnetic resonance (PET/MR) systems to make the transition from research prototypes to systems with full potential for clinical imaging. Options for directly measuring the attenuation maps, as is possible with PET/computed tomography or PET transmission scans, are not included in PET/MR(More)
Clinical PET/MR requires the use of patient positioning aids to immobilize and support patients for the duration of the combined examination. Ancillary immobilization devices contribute to overall attenuation of the PET signal, but are not detected with conventional MR sequences and, hence, are ignored in standard MR-based attenuation correction (MR-AC). We(More)
UNLABELLED Pediatric imaging is regarded as a key application for combined PET/MR imaging systems. Because existing MR-based attenuation-correction methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intrapatient variability of attenuation coefficients and anatomic(More)
UNLABELLED Hybrid PET/MR systems have recently entered clinical practice. Thus, the accuracy of MR-based attenuation correction in simultaneously acquired data can now be investigated. We assessed the accuracy of 4 methods of MR-based attenuation correction in lesions within soft tissue, bone, and MR susceptibility artifacts: 2 segmentation-based methods(More)
OBJECTIVE A potential major application of simultaneous avalanche photodiode-based positron emission tomography (PET)/magnetic resonance imaging (MRI) systems are quantitative brain studies for cerebral blood flow measurements in combination with blood-oxygen-level-dependent or perfusion MRI, requiring a high performance for both modalities. Thus, we(More)
In this study, simultaneous positron emission tomography (PET)/magnetic resonance (MR) imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-d-glucose (18F-FDG), 11C-choline, and 18F-fluorothymidine (18F-FLT) to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the(More)
PURPOSE Our objective was a multifunctional imaging approach of chronic sclerodermatous graft-versus-host disease (ScGVHD) and its course during therapy using PET/MRI. METHODS We performed partial-body PET/CT and PET/MRI of the calf in 6 consecutively recruited patients presenting with severe ScGVHD. The patients were treated with different(More)
Predicting a CT image or a map of the linear attenuation coefficients from the information provided by magnetic resonance imaging (MRI) is a challenging task. This problem is of significant importance for combined positron emission tomography (PET)/MRI scanners, as quantitative PET image reconstruction requires an attenuation map. In PET/CT this attenuation(More)
PURPOSE The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation(More)
  • 1