Learn More
Neurons process and encode information by generating sequences of action potentials. For all spiking neurons, the encoding of single-neuron computations into sequences of spikes is biophysically determined by the cell's action-potential-generating mechanism. It has recently been discovered that apparently minor modifications of this mechanism can(More)
For general networks of pulse-coupled oscillators, including regular, random, and more complex networks, we develop an exact stability analysis of synchronous states. As opposed to conventional stability analysis, here stability is determined by a multitude of linear operators. We treat this multioperator problem exactly and show that for inhibitory(More)
Cochlear inner hair cells (IHCs) develop from pre-sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and(More)
The brain's visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago--three species separated since the basal radiation of placental mammals more than 65 million years ago--and found(More)
An analytically tractable class of dynamical models for the pattern of contour detecting neurons in the visual cortex is introduced. A permutation symmetry of the model equations guarantees the emergence of contour detectors for all stimulus orientations. By this symmetry a large number of dynamically degenerate solutions exist that quantitatively reproduce(More)
BACKGROUND Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. RESULTS We show here that a 3-week(More)
Complexins (CPXs I-IV) presumably act as regulators of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, but their function in the intact mammalian nervous system is not well established. Here, we explored the role of CPXs in the mouse auditory system. Hearing was impaired in CPX I knock-out mice but normal in(More)
Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). Postsynaptic recordings from this synapse in prehearing animals had delivered strong indications for synchronized release of several vesicles. The underlying mechanism, however, remains unclear. Here, we used presynaptic membrane capacitance(More)
The mechanisms underlying the large amplitudes and heterogeneity of excitatory postsynaptic currents (EPSCs) at inner hair cell (IHC) ribbon synapses are unknown. Based on electrophysiology, electron and superresolution light microscopy, and modeling, we propose that uniquantal exocytosis shaped by a dynamic fusion pore is a candidate neurotransmitter(More)