Fred Schwaller

Learn More
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and(More)
The rostroventral medial medulla (RVM) is part of a rapidly acting spino-bulbo-spinal loop that is activated by ascending nociceptive inputs and drives descending feedback modulation of spinal nociception. In the adult rat, the RVM can facilitate or inhibit dorsal horn neuron inputs but in young animals descending facilitation dominates. It is not known(More)
BACKGROUND Neonatal surgical injury triggers developmentally regulated long-term changes that include enhanced hyperalgesia and spinal microglial reactivity after reinjury. To further evaluate priming of response by neonatal hindpaw incision, the authors investigated the functional role of spinal microglial p38 mitogen-activated protein kinase after(More)
Descending connections from brainstem nuclei are known to exert powerful control of spinal nociception and pain behaviours in adult mammals. Here we present evidence that descending serotonergic fibres not only inhibit nociceptive activity, but also facilitate non-noxious tactile activity in the healthy adult rat spinal dorsal horn via activation of spinal(More)
  • 1