Learn More
We have identified an oligopeptide transporter in the yeast Saccharomyces cerevisiae which mediates the uptake of tetra- and pentapeptides, including the endogenous opioids leucine enkephalin (Tyr-Gly-Gly-Phe-Leu) and methionine enkephalin (Tyr-Gly-Gly-Phe-Met). The transporter is encoded by the gene OPT1. Yeast expressing OPT1 can utilize enkephalins to(More)
A plasmid vector was developed that permitted high-level expression of a functional form of the Saccharomyces cerevisiae alpha-factor receptor (the STE2 gene product) tagged at its C-terminal end with an epitope (FLAG) and a His6 tract. When expressed in yeast from this plasmid, Ste2p was produced at a level at least 3-fold higher than that reported(More)
A Candida albicans oligopeptide transport gene, OPT1, was cloned from a C. albicans genomic library through heterologous expression in the Saccharomyces cerevisiae di-/tripeptide transport mutant PB1X-9B. When transformed with a plasmid harbouring OPT1, S. cerevisiae PB1X-9B, which did not express tetra-/pentapeptide transport activity under the conditions(More)
We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the(More)
In this study of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p, we present data indicating that the first extracellular loop (EL1) of the alpha-factor receptor has tertiary structure that limits solvent accessibility and that its conformation changes in a ligand-dependent manner. The substituted cysteine accessibility method was used to(More)
Oligomerization of G protein-coupled receptors is commonly observed, but the functional significance of oligomerization for this diverse family of receptors remains poorly understood. We used bioluminescence resonance energy transfer (BRET) to examine oligomerization of Ste2p, a G protein-coupled receptor that serves as the receptor for the alpha-mating(More)
Previously, we reported the isolation of a peptide transport gene designated AtPTR2 from Arabidopsis thaliana by functional complementation of a yeast peptide transport mutant. We now report the isolation of a second peptide transport gene (AtPTR2-B) from Arabidopsis using the same approach. Similar to the effects of transferring AtPTR2-A (previously called(More)
The model eukaryote Saccharomyces cerevisiae has two distinct peptide transport mechanisms, one for di-/tripeptides (the PTR system) and another for tetra-/pentapeptides (the OPT system). The PTR system consists of three genes, PTR1, PTR2 and PTR3. The transporter (Ptr2p), encoded by the gene PTR2, is a 12 transmembrane domain (TMD) integral membrane(More)
Few polytopic membrane proteins have had their topology determined experimentally. Often, researchers turn to an algorithm to predict where the transmembrane domains might lie. Here we use a consensus method, using six different transmembrane domain prediction algorithms on six members of the oligopeptide transport family, all of which have been(More)
Prototrophic Saccharomyces cerevisiae X2180, when grown on unsupplemented minimal medium, displayed little sensitivity to ethionine- and m-fluorophenylalanine-containing toxic dipeptides. We examined the influence of the 20 naturally occurring amino acids on sensitivity to toxic dipeptides. A number of these amino acids, at concentrations as low as 1 microM(More)