Learn More
Although an association between the product of the familial Alzheimer's disease (FAD) gene, presenilin 1 (PS1), and beta-catenin has been reported recently, the cellular consequences of this interaction are unknown. Here, we show that both the full length and the C-terminal fragment of wild-type or FAD mutant PS1 interact with beta-catenin from transfected(More)
The introduction of simian virus 40 large T antigen (SVLT) into human primary cells enables them to proliferate beyond their normal replicative life span. In most cases, this temporary escape from senescence eventually ends in a second proliferative block known as "crisis," during which the cells cease growing or die. Rare immortalization events in which(More)
Point mutations that affect HLA-DR structure or expression have not previously been described. In the present study, we isolated such mutants by immunoselection of an ethyl methanesulfonate-mutagenized HLA-DR3 cell line with an anti-HLA-DR3 monoclonal antibody, 16.23. To facilitate analysis, we used a parent cell line with a preexisting deletion of one(More)
The Wnt pathway effector gene TCF7L2 has been linked to type II diabetes, making it important to study the role of Wnt signaling in diabetes pathogenesis. We examined the expression of multiple Wnt pathway components in pancreases from normal individuals and type II diabetic individuals. Multiple members of the Wnt signaling pathway, including TCF7L2,(More)
Background: It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics.(More)
Beta-cell deficit is the major pathological feature in type 1 and type 2 diabetes patients, and plays a key role in disease progression. In principle, beta-cell regeneration can occur by replication of pre-existing beta-cells, or by beta-cell neogenesis from stem/progenitors. Unfortunately, beta-cell replication is limited by the almost complete absence of(More)
Beta-cell replication dramatically declines with age. Here, we report that the level of CENP-A, a protein required for cell division, declines precipitously with age in an islet-specific manner. CENP-A is essentially undetectable after age 29 in humans. However, exocrine cells retain CENP-A expression. The decline in islet-cell CENP-A expression is more(More)
Type I diabetes (T1D) is an autoimmune disease in which an immune response to pancreatic β-cells results in their loss over time. Although the conventional view is that this loss is due to autoimmune destruction, we present evidence of an additional phenomenon in which autoimmunity promotes islet endocrine cell transdifferentiation. The end result is a(More)
Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical(More)