Fred J. Stevens

Learn More
MOTIVATION Data that characterize primary and tertiary structures of proteins are now accumulating at a rapid and accelerating rate and require automated computational tools to extract critical information relating amino acid changes with the spectrum of functionally attributes exhibited by a protein. We propose that immunoglobulin-type beta-domains, which(More)
BACKGROUND Automated protein function prediction methods are needed to keep pace with high-throughput sequencing. With the existence of many programs and databases for inferring different protein functions, a pipeline that properly integrates these resources will benefit from the advantages of each method. However, integrated systems usually do not provide(More)
BACKGROUND Amyloid is insoluble aggregated proteins deposited in the extra cellular space. About 25 different proteins are known to form amyloid in vivo and are associated with severe diseases such as Alzheimer's disease, prion diseases and type-2 diabetes. Light chain (AL) -amyloidosis is unique among amyloid diseases in that the fibril protein, a(More)
MOTIVATION Methods that focus on secondary structures, such as Position Specific Scoring Matrices and Hidden Markov Models, have proved useful for assigning proteins to families. However, for assigning proteins to an attribute class within a family these methods may introduce more free parameters than are needed. There are fewer members and there is less(More)
Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (FALS), and approximately 25% of FALS cases are caused by mutations in superoxide dismutase-1 (SOD1). Mutant (MT) SOD1 kills motor neurons because of the mutant protein's toxicity; however, the basis for toxicity is unknown. We electroporated wild-type (WT), truncated WT or MTSOD1(More)
In light chain (LC) amyloidosis an immunoglobulin LC assembles into fibrils that are deposited in various tissues. Little is known about how these fibrils form in vivo. We previously showed that a known amyloidogenic LC, SMA, can give rise to amyloid fibrils in vitro when a segment of one of its beta sheets undergoes a conformational change, exposing an(More)
SUMMARY The classification of protein sequences obtained from patients with various immunoglobulin-related conformational diseases may provide insight into structural correlates of pathogenicity. However, clinical data are very sparse and, in the case of antibody-related proteins, the collected sequences have large variability with only a small subset of(More)
Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a(More)
criminate between driver and passenger mutations, as was also shown recently in the context of FLT3. In the MOLT-4 and RPMI-8402 cell lines, we identified another transcript variant, which lacks exons 7 and 8 (nucleotides 648-1178). This results in a shift in the open reading frame with generation of a premature stop codon in exon 9. Consequently, a(More)
Most homologous pairs of proteins have no significant sequence similarity to each other and are not identified by direct sequence comparison or profile-based strategies. However, multiple sequence alignments of low similarity homologues typically reveal a limited number of positions that are well conserved despite diversity of function. It may be inferred(More)