Learn More
This paper describes a six-legged robot based on the features of an agile insect, the American cockroach, Periplaneta americana. The robot is designed with insect-like leg structure and placement, and actuators that mimic muscles. A test leg is also described that shows how sensory feedback can serve as the basis of the control system for the robot in order(More)
1. The effects of amputation of a middle leg on the motor pattern in the legs of freely walking cockroaches (Periplaneta americana L.) were studied. 2. The general effects of amputating a middle leg are similar to those arising from amputation of a rear leg. These effects are: multiple bursting, more variable and inconsistent timing (phase) between bursts(More)
A spike discrimination algorithm based on the analysis of spike up- and down-slopes can advantageously replace those based only on amplitude with a minimal increase of programming complexity and processing time. Such an algorithm was developed to sort muscle depolarizations from nerve spikes in electromyograms in insects. It could also be used to sort(More)
With the advent of significant collaborations between researchers who study insect walking and robotics engineers interested in constructing adaptive legged robots, insect walking is once again poised to make a more significant scientific contribution than the numbers of participants in the field might suggest. This review outlines current knowledge of the(More)
A computer algorithm to identify 'bursts' in trains of spikes is described. The algorithm works by constructing a histogram of interspike intervals, then analyzing the histogram to detect the critical interval value in the distribution that represents the break between short intervals within a burst and the longer intervals between bursts. When such a value(More)
This paper outlines aspects of locomotor control in insects that may serve as the basis for the design of controllers for autonomous hexapod robots. Control of insect walking can be considered hierarchical and modular. The brain determines onset, direction, and speed of walking. Coordination is done locally in the ganglia that control leg movements.(More)
Underwater flow sensing is important for many robotics and military applications, including underwater robots and vessels. We report the development of micromachined, distributed flow sensors based on a biological inspiration, the fish lateral line sensors. Design and fabrication processes for realizing individual lateral line sensor nodes are discussed in(More)
1. Rhythmic motor activity may be recorded in the legs of cockroaches during the execution of several different types of behaviour that involve leg movements. It was examined in detail during searching and walking. 2. During walking, motor activity always consisted of a series of bursts separated by silent periods. During searching, it was usually(More)
The timing of bursts of motor activity in extensor muscles in the coxae of pairs of legs in intact freely walking American cockroaches was studied. The timing of bursts in adjacent and non-adjacent leg pairs generally reflected the common alternating tripod gait of these insects. Detailed study of the timing further revealed two previously unreported(More)