Fred C. Witteborn

Learn More
On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates(More)
We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral(More)
Spectrophotometric observations of the jovian satellite Io on 20 and 21 February 1978 (Universal Time) were made from 1.2 to 5.4 micrometers. Io's brightness at 4.7 to 5.4 micrometers was found to be three to five times greater at an orbital phase angle of 68 degrees than at orbital phase angles of 23 degrees (5.5 hours before the brightening) and 240(More)
Direct imaging of extrasolar planets, and Earth-like planets in particular, is an exciting but difficult problem requiring a telescope imaging system with 10 contrast at separations of 100mas and less. Furthermore, the current NASA science budget may only allow for a small 1-2m space telescope for this task, which puts strong demands on the performance of(More)
Coronagraph technology is advancing and promises to enable space telescopes capable of seeing debris disks as well as seeing and spectrally characterizing exo-Earths. Recently, NASA's explorer program has selected the EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) mission concept for technology development. EXCEDE is a 0.7m space(More)
The 250,000 sources in the recently issued Infrared Astronomy Satellite (IRAS) all-sky infrared catalog are a challenge to astronomy. Many of these sources will be studied with existing and planned ground-based and airborne telescopes, but many others can no longer even be detected now that IRAS has ceased to operate. As anticipated by advisory panels of(More)
Infrared spectra of Io in the region 2.5-5.0 micrometers, including new observational data, are analyzed using detailed laboratory studies of plausible surface ices. Besides the absorption bands attributable to sulfur dioxide frosts, four infrared spectral features of Io are shown to be unidentified. These unidentified features show spatial and temporal(More)
A strong absorption band at 3590 +/- 20 cm-1 (2.790 +/- 0.015 micrometers) has been discovered in the spectrum of Io using the Kuiper Airborne Observatory (KAO). The 2 nu1 + nu3 combination mode of solid SO2 falls at this position. Since SO2 is abundant on Io it must contribute to the new band. However, a band due to H2O was predicted near this frequency(More)
We have discovered a new IR emission feature at 1905 cm-1 (5.25 microns) in the spectrum of BD +30 degrees 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, "1310," 1160, and 890 cm-1 (3.3, 3.4, 5.7, 6.2, "7.7," 8.6, and 11.2 microns). The origin of this new feature is discussed and it is assigned to an(More)
Spectrophotometry from 5-10 micrometers (delta lambda/lambda approximately 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 December 12.1 and 1986 April 8.6 and 10.5, UT. 8-13 micrometers data were obtained on 17.2 December 1985 from the Nickel Telescope at Lick Observatory. The spectra show a strong broad emission band at(More)