Learn More
Human herpesviruses are large and structurally complex viruses that cause a variety of diseases. The three-dimensional structure of the herpesvirus capsid has been determined at 8.5 angstrom resolution by electron cryomicroscopy. More than 30 putative alpha helices were identified in the four proteins that make up the 0.2 billion-dalton shell. Some of these(More)
Several factors, including spatial and temporal coherence of the electron microscope, specimen movement, recording medium, and scanner optics, contribute to the decay of the measured Fourier amplitude in electron image intensities. We approximate the combination of these factors as a single Gaussian envelope function, the width of which is described by a(More)
Comparative analysis of capsid protein structures in the eukaryote-infecting herpesviruses (Herpesviridae) and the prokaryote-infecting tailed DNA bacteriophages (Caudovirales) revealed a characteristic fold that is restricted to these two virus lineages and is indicative of common ancestry. This fold not only serves as a major architectural element in(More)
The mechanism of anterograde transport of alphaherpesviruses in axons remains controversial. This study examined the transport, assembly, and egress of herpes simplex virus type 1 (HSV-1) in mid- and distal axons of infected explanted human fetal dorsal root ganglia using confocal microscopy and transmission electron microscopy (TEM) at 19, 24, and 48 h(More)
The three-dimensional structures of full and empty capsids of HSV1 were determined by computer analysis of low dose cryo-electron images of ice embedded capsids. The full capsid structure is organized into outer, intermediate, and inner structural layers. The empty capsid structure has only one layer which is indistinguishable from the outer layer of the(More)
Efforts in structural biology have targeted the systematic determination of all protein structures through experimental determination or modeling. In recent years, 3-D electron cryomicroscopy (cryoEM) has assumed an increasingly important role in determining the structures of these large macromolecular assemblies to intermediate resolutions (6-10 A). While(More)
Electron cryomicroscopy and icosahedral reconstruction are used to obtain the three-dimensional structure of the 1250-A-diameter herpesvirus B-capsid. The centers and orientations of particles in focal pairs of 400-kV, spot-scan micrographs are determined and iteratively refined by common-lines-based local and global refinement procedures. We describe the(More)
Autophagy has been established as a player in host defense against viruses. The mechanisms by which the host induces autophagy during infection are diverse. In the case of HSV type 1 (HSV-1), dsRNA-dependent protein kinase is essential for induction of autophagy in fibroblasts through phosphorylation of eukaryotic initiation factor 2α (eIF2α). HSV-1(More)
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In(More)
In the dorsal root ganglia (DRG) of mice latently infected with the herpes simplex virus type 1 mutant in1814, there are more neurons that contain latency-associated transcripts (LATs) than in DRG of mice infected with a dose of equal infectivity of either a revertant or a wild-type virus. We investigated whether higher levels of LAT+ neurons resulted in(More)