Frauke Melchior

Learn More
We have found that the mammalian Ran GTPase-activating protein RanGAP1 is highly concentrated at the cytoplasmic periphery of the nuclear pore complex (NPC), where it associates with the 358-kDa Ran-GTP-binding protein RanBP2. This interaction requires the ATP-dependent posttranslational conjugation of RanGAP1 with SUMO-1 (for small ubiquitin-related(More)
A decade has passed since SUMO (small ubiquitin-related modifier) was discovered to be a reversible post-translational protein modifier. During this time many enzymes that participate in regulated SUMO-conjugation and -deconjugation pathways have been identified and characterized. In parallel, the search for SUMO substrates has produced a long list of(More)
We have investigated a possible involvement of GTPases in nuclear protein import using an in vitro transport system involving digitonin-permeabilized cells supplemented with exogenous cytosol. Transport in this system was measured with a novel ELISA-based assay that allows rapid quantitative analysis. GTP gamma S and other nonhydrolyzable analogues of GTP(More)
Posttranslational modification with SUMO1 regulates protein/protein interactions, localization, and stability. SUMOylation requires the E1 enzyme Aos1/Uba2 and the E2 enzyme Ubc9. A family of E3-like factors, PIAS proteins, was discovered recently. Here we show that the nucleoporin RanBP2/Nup358 also has SUMO1 E3-like activity. RanBP2 directly interacts(More)
SUMO (small ubiquitin-related modifier) is the best-characterized member of a growing family of ubiquitin-related proteins. It resembles ubiquitin in its structure, its ability to be ligated to other proteins, as well as in the mechanism of ligation. However, in contrast to ubiquitination-often the first step on a one-way road to protein(More)
Nuclear pore complexes (NPCs) are gateways for nucleocytoplasmic exchange. To analyze their structure in a close-to-life state, we studied transport-active, intact nuclei from Dictyostelium discoideum by means of cryoelectron tomography. Subvolumes of the tomograms containing individual NPCs were extracted in silico and subjected to three-dimensional(More)
The Wnt-responsive transcription factor LEF1 can activate transcription in association with beta-catenin and repress transcription in association with Groucho. In search of additional regulatory mechanisms of LEF1 function, we identified the protein inhibitor of activated STAT, PIASy, as a novel interaction partner of LEF1. Coexpression of PIASy with LEF1(More)
Posttranslational modification with small ubiquitin-related modifier (SUMO) has emerged as a central regulatory mechanism of protein function. However, little is known about the regulation of sumoylation itself. It has been reported that it is increased after exposure to various stresses including strong oxidative stress. Conversely, we report that ROS(More)
Small ubiquitin-related modifier (SUMO) proteins are reversibly coupled to numerous intracellular targets and modulate their interactions, localization, activity or stability. Recent advances in the SUMO field have uncovered the first SUMO E3 ligases and point to a complex family of isopeptidases. SUMO has been linked to many different pathways, including(More)
BICD2 is one of the two mammalian homologues of the Drosophila Bicaudal D, an evolutionarily conserved adaptor between microtubule motors and their cargo that was previously shown to link vesicles and mRNP complexes to the dynein motor. Here, we identified a G2-specific role for BICD2 in the relative positioning of the nucleus and centrosomes in dividing(More)