Learn More
Artificial neural networks are applied in many situations. neuralnet is built to train multi-layer perceptrons in the context of regression analyses, i.e. to approximate functional relationships between covariates and response variables. Thus, neural networks are used as extensions of generalized linear models. neuralnet is a very flexible package. The(More)
BACKGROUND Our aim is to investigate the ability of neural networks to model different two-locus disease models. We conduct a simulation study to compare neural networks with two standard methods, namely logistic regression models and multifactor dimensionality reduction. One hundred data sets are generated for each of six two-locus disease models, which(More)
BACKGROUND During the last decades, sex and gender biases have been identified in various areas of biomedical and public health research, leading to compromised validity of research findings. As a response, methodological requirements were developed but these are rarely translated into research practice. The aim of this study is to provide good practice(More)
Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural(More)
  • 1