Frauke Alves

Learn More
Two mammalian receptor tyrosine kinases (DDR1 and DDR2) have extracellular domains closely related to a D. discoideum lectin, discoidin, required for cell aggregation. Here, we show that the mammalian DDR receptors bind and are activated by specific types of collagen. Stimulation of DDR receptor tyrosine kinase activity requires the native triple-helical(More)
We have investigated the possible implication of the cell cycle-regulated K(+) channel ether à go-go (EAG) in cell proliferation and transformation. We show that transfection of EAG into mammalian cells confers a transformed phenotype. In addition, human EAG mRNA is detected in several somatic cancer cell lines, despite being preferentially expressed in(More)
Ion channels are being associated with a growing number of diseases including cancer. This overview summarizes data on voltage-gated potassium channels (VGKCs) that exhibit oncogenic properties: ether-à-go-go type 1 (Eag1). Normally, Eag1 is expressed almost exclusively in tissue of neural origin, but its ectopic expression leads to uncontrolled(More)
Mammary carcinoma kinase 10 (MCK-10) and colon carcinoma kinase 2 (CCK-2) constitute a subclass of receptor tyrosine kinases characterized by a discoidin I motif in the extracellular domain and a large cytoplasmic juxtamembrane (JM) region. While the ectodomain structure suggests a common role in cell aggregation, the JM domains of MCK-10 and CCK-2 are(More)
Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor (DDR) tyrosine kinases, DDR1 and DDR2. It is presently unclear whether collagen-induced DDR receptor activation, which occurs with very slow kinetics, involves additional proteins with kinase activity or membrane-anchored proteins serving as(More)
Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor tyrosine kinases, DDR1 and DDR2. Here, we used a recombinant fusion protein between the extracellular domain of DDR1 and alkaline phosphatase to detect specific receptor binding sites during mouse development. Major sites of DDR1-binding(More)
An increasing number of ion channels are being found to be causally involved in diseases, giving rise to the new field of "channelopathies". Cancer is no exception, and several ion channels have been linked to tumour progression. Among them is the potassium channel EAG (Ether-a-go-go). Over 75% of tumours have been tested positive using a monoclonal(More)
In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide(More)
The present study was aimed at evaluating the effect of the matrix metalloproteinase (MMP) inhibitor prinomastat (AG3340) on tumor progression using an orthotopic pancreatic carcinoma model in severe combined immunodeficient mice. In controls, receiving vehicle only, the poorly differentiated ductal adenocarcinoma invaded into adjacent organs and(More)
The prolyl-4-hydroxylase domain 1-3 (PHD1-3) enzymes are regulating the protein stability of the α-subunit of the hypoxia-inducible factor-1 (HIF-1), which mediates oxygen-dependent gene expression. PHD2 is the main isoform regulating HIF-1α hydroxylation and thus stability in normoxia. In human cancers, HIF-1α is overexpressed as a result of intratumoral(More)