Franziska Michor

Learn More
The clinical success of the ABL tyrosine kinase inhibitor imatinib in chronic myeloid leukaemia (CML) serves as a model for molecularly targeted therapy of cancer, but at least two critical questions remain. Can imatinib eradicate leukaemic stem cells? What are the dynamics of relapse due to imatinib resistance, which is caused by mutations in the ABL(More)
Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and(More)
The emergence and maintenance of cooperation by natural selection is an enduring conundrum in evolutionary biology, which has been studied using a variety of game theoretical models inspired by different biological situations. The most widely studied games are the Prisoner's Dilemma, the Snowdrift game and by-product mutualism for pairwise interactions, as(More)
Whenever life wants to invade a new habitat or escape from a lethal selection pressure, some mutations may be necessary to yield sustainable replication. We imagine situations like (i) a parasite infecting a new host, (ii) a species trying to invade a new ecological niche, (iii) cancer cells escaping from chemotherapy, (iv) viruses or microbes evading(More)
Evolutionary concepts such as mutation and selection can be best described when formulated as mathematical equations. Cancer arises as a consequence of somatic evolution. Therefore, a mathematical approach can be used to understand the process of cancer initiation and progression. But what are the fundamental principles that govern the dynamics of(More)
Human cancer is caused by the accumulation of genetic alterations in cells. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and represent promising targets for therapeutic intervention. Here we describe a computational approach, called Retracing the Evolutionary Steps in Cancer(More)
Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumours. The mechanisms responsible for the coexistence of distinct sub-clones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal(More)