Franziska K Wilhelm

Learn More
Astrocytes are important glial cells in the brain providing metabolic support to neurons as well as contributing to brain signaling. These different functional levels have to be highly coordinated to allow for proper cell and brain function. In this study, we show that in astrocytes the NAD(+) /NADH redox state modulates dopamine-induced Ca(2+) signals(More)
BACKGROUND DNA recombination technologies such as the Cre/LoxP system advance modern biological research by allowing conditional gene regulation in vivo. However, the precise targeting of a particular cell type at a given time point has remained challenging since spatial specificity has so far depended exclusively on the promoter driving Cre recombinase(More)
The control and maintenance of the intracellular redox state is an essential task for cells and organisms. NAD+ and NADH constitute a redox pair crucially involved in cellular metabolism as a cofactor for many dehydrogenases. In addition, NAD+ is used as a substrate independent of its redox-carrier function by enzymes like poly(ADP)ribose polymerases,(More)
The specificity of promoters used to drive the expression of proteins of interest is a crucial determinant of transgenesis. Numerous strategies have been developed to restrict expression on a certain cell population. On the other hand it has also remained challenging to obtain ubiquitous expression of transgenes which is needed for example to generate(More)
The NAD(+)/NADH redox pair constitutes an important metabolic node connecting catabolic pathways to energy production. We took advantage of the fluorescence of NADH to monitor changes in NADH levels by 2-photon laser scanning microscopy in cultured cortical astrocytes and acutely isolated brain slices in response to dopamine (DA), a major neurotransmitter(More)
The intracellular redox state is established by several redox pairs, such as NAD(+) /NADH and NADP(+) /NADPH and glutathione. This redox state is a crucial determinant of cellular metabolism and function. Astrocytes are an important cell population contributing to brain metabolism and brain energy supply, so a careful control of these redox pairs is(More)
BACKGROUND Phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome (PHTS) is caused by germ line mutations in the PTEN gene. Symptoms include cancer predisposition, immune deviations, and lipomas/lipomatosis. No causal standard therapy is available. We describe a therapeutic attempt with the mammalian target of rapamycin (mTOR) inhibitor sirolimus(More)
OBJECTIVE Insulin-like-growth factor binding protein 2 (IGFBP-2) is thought to be a marker for the phosphatase and tensin homolog (PTEN) status and activity of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. We aimed to evaluate whether or not lipoma cells of a patient with a heterozygous deletion in the PTEN gene(More)
Astrocytes operate in close spatial relationship to other cells including neurons. Structural interaction is controlled by a dynamic interplay between actin-based cell motility and contact formation via cell-cell and cell-extracellular matrix adhesions. A central player in the control of cell adhesion is the cytoskeletal adaptor protein Vinculin.(More)
  • 1