Franz S. Hover

Learn More
The design and construction of a biomimetic flapping foil autonomous underwater vehicle is detailed. The vehicle was designed as a proof of concept for the use of oscillating foils as the sole source of motive power for a cruising and hovering underwater vehicle. Primary vehicle design requirements included scalability and flexibility in terms of the number(More)
We discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). Unlike a large body of prior work, we focus on planning the views of the AUV to improve the quality of the inspection, rather than maximizing the accuracy of a given data stream. We formulate the inspection planning(More)
We present several new contributions in sampling-based coverage path planning, the task of finding feasible paths that give 100% sensor coverage of complex structures in obstaclefilled and visually occluded environments. First, we establish a framework for analyzing the probabilistic completeness of a sampling-based coverage algorithm, and derive results on(More)
Underwater acoustic communication channels display highly variable and stochastic performance, especially in multipath-limited shallow-water and harbor environments. A mobile acoustic node can, however, learn the channel's properties as it moves about. Maximizing the cumulative data transmission through adaptive node positioning is a clean exploitation vs.(More)
We examine the problem of utilizing an autonomous underwater vehicle (AUV) to collect data from an underwater sensor network. The sensors in the network are equipped with acoustic modems that provide noisy, range-limited communication. The AUV must plan a path that maximizes the information collected while minimizing travel time or fuel expenditure. We(More)
In this paper we address the problem of drift-free navigation for underwater vehicles performing harbor surveillance and ship hull inspection. Maintaining accurate localization for the duration of a mission is important for a variety of tasks, such as planning the vehicle trajectory and ensuring coverage of the area to be inspected. Our approach only uses(More)