Learn More
We used near-infrared spectroscopy (NIRS) to study non-invasively changes in cerebral hemoglobin oxygenation in the frontal and parietal cortex during performance of a verbal fluency task in patients with Alzheimer's disease (AD). Whereas healthy elderly subjects (n = 19, age 67 +/- 10 years) showed increases in concentrations of oxygenated hemoglobin(More)
We used volumetric MRI and analysis of areas under receiver operating characteristic (ROC) curves to directly compare the extent of hippocampus-amygdala formation (HAF) and corpus callosum atrophy in patients with Alzheimer's disease (AD) in different clinical stages of dementia. Based on neuropathological studies, we hypothesized that HAF atrophy,(More)
We used near-infrared spectroscopy (NIRS) to study noninvasively the influence of aging on changes in the local concentration of oxygenated hemoglobin ([HbO2]), reduced hemoglobin ([HbR]), and total hemoglobin ([HbT] = [HbR] + [HbO2]) during activation of brain function. Young subjects (n = 12; age, 28 +/- 4 years) performing calculation tasks showed an(More)
Cognitive tasks involving conflicting stimuli and responses are associated with an early age-related decline in performance. Conflict and conflict-induced interference can be stimulus- or response-related. In classical stimulus-response compatibility tasks, such as the Stroop task, the event-related potential (ERP) usually reveals a greater negativity on(More)
Evidence suggests that amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Here we investigated the specific effects of Abeta on mitochondrial function under physiological(More)
The aim of the present study was to identify the distribution of the second melatonin receptor (MT2) in the human hippocampus of elderly controls and Alzheimer's disease (AD) patients. This is the first report of immunohistochemical MT2 localization in the human hippocampus both in control and AD cases. The specificity of the MT2 antibody was ascertained by(More)
The cholinergic neurons of the basal forebrain system are sensitive to nerve growth factor (NGF), a member of the neurotrophin gene family. Since the cholinergic system is affected early in the course of Alzheimer's disease (AD), it was hypothesized that a deficit in NGF, e.g. reduced neurotrophin uptake by specific receptors, may play a role in neuronal(More)
Melatonin is synthesized in the pineal gland and retina during the night. Retinal melatonin is believed to be involved in local cellular modulation and in regulation of light-induced entrainment of circadian rhythms. The present study provides the first immunohistochemical evidence for the localization of melatonin 1a-receptor (MT1) in human retina of aged(More)
The pineal secretory product melatonin has, in addition to regulating retinal, circadian and vascular functions, neuroprotective effects. Blood melatonin levels are often decreased in Alzheimer's disease (AD), a progressively disabling neurodegenerative disorder. In this study we provide the first immunohistochemical evidence for the localization of(More)
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in humans and is characterized by neuronal loss, neurofibrillary tangles and beta-amyloid deposition. The interaction between neurotrophins and their tyrosine kinase (trk) receptors is important for cellular differentiation and survival. Interestingly, marked reductions in(More)