Learn More
Recently discovered macrocyclic carbon suboxide (MCS) factors with the general formula (C(3)O(2))(n) were found to strongly inhibit rabbit and rat Na,K-ATPase as well as SR Ca-ATPase. Highly active MCS factors were obtained by a base/acid treatment of their lipophilic precursor isolated from plants. In the ESI-MS spectra, the dominant molar mass ion of 431(More)
  • F Kerek
  • 2000
The Natriuretic and Endogenous DigitalisLike Factors (EDLFs) are disclosed to be cyclomeric and macroring closed derivatives of the inorganic carbon suboxide. The macrocyclic cyclohexamer with six carbon suboxide units has a molar mass of 408.2 Da, as previously been found for the EDLF of animal origin. The anhydrous cyclohexameric factor is lipophilic but(More)
The previously reported class of potent inorganic inhibitors of Na,K-ATPase, named MCS factors, was shown to inhibit not only Na,K-ATPase but several P-type ATPases with high potency in the sub-micromolar range. These MCS factors were found to bind to the intracellular side of the Na, K-ATPase. The inhibition is not competitive with ouabain binding, thus(More)
Extracts of Helleborus roots were traditionally used in the Balkan area for their analgesic action. We report that the pure natural product MCS-18 isolated from this source is a potent, specific and reversible antagonist of the capsaicin receptor, TRPV1, expressed in rat dorsal root ganglion (DRG) neurons. TRPV1 is a non-selective cation channel expressed(More)
The Na(+)/K(+)-ATPase is a membrane ion-transporter protein, specifically inhibited by digitalis glycosides used in cardiac therapy. The existence in mammals of some endogenous digitalis-like factors (EDLFs) as presumed ATPase ligands is generally accepted. But the chemical structure of these factors remained elusive because no weighable amounts of pure(More)
  • 1