Learn More
Migration toward pathology is the first critical step in stem cell engagement during regeneration. Neural stem cells (NSCs) migrate through the parenchyma along nonstereotypical routes in a precise directed manner across great distances to injury sites in the CNS, where they might engage niches harboring local transiently expressed reparative signals. The(More)
Human pluripotent stem cells (hPSCs) are potential sources of cells for modeling disease and development, drug discovery, and regenerative medicine. However, it is important to identify factors that may impact the utility of hPSCs for these applications. In an unbiased analysis of 205 hPSC and 130 somatic samples, we identified hPSC-specific epigenetic and(More)
Pluripotent stem cells (PSCs) are defined by their potential to generate all cell types of an organism. The standard assay for pluripotency of mouse PSCs is cell transmission through the germline, but for human PSCs researchers depend on indirect methods such as differentiation into teratomas in immunodeficient mice. Here we report PluriTest, a robust(More)
A number of key regulators of mouse embryonic stem (ES) cell identity, including the transcription factor Nanog, show strong expression fluctuations at the single-cell level. The molecular basis for these fluctuations is unknown. Here we used a genetic complementation strategy to investigate expression changes during transient periods of Nanog(More)
Neural stem cell (NSC) transplantation represents an unexplored approach for treating neurodegenerative disorders associated with cognitive decline such as Alzheimer disease (AD). Here, we used aged triple transgenic mice (3xTg-AD) that express pathogenic forms of amyloid precursor protein, presenilin, and tau to investigate the effect of neural stem cell(More)
Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells-typified by embryonic stem cells, which are capable of virtually unlimited(More)
Embryonic stem cells are unique among cultured cells in their ability to self-renew and differentiate into a wide diversity of cell types, suggesting that a specific molecular control network underlies these features. Human embryonic stem cells (hESCs) are known to have distinct mRNA expression, global DNA methylation, and chromatin profiles, but the(More)
Neural stem cells are a self-renewing population that generates the neurons and glia of the developing brain. They can be isolated, proliferated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or pathologically altered CNS. Neural stem cells have been considered for use in cell replacement therapies in various(More)
Understanding the mechanisms by which stem cells home precisely to regions of injury or degeneration is of importance to both basic and applied regenerative medicine. Optimizing regenerative processes may depend on identifying the range of molecules that subserve stem cell trafficking. The "rolling" of extravasating cells on endothelium under conditions of(More)
Human pluripotent stem cells have the unique properties of being able to proliferate indefinitely in their undifferentiated state and to differentiate into any somatic cell type. These cells are thus posited to be extremely useful for furthering our understanding of both normal and abnormal human development, providing a human cell preparation that can be(More)