Franz J. Himpsel

Learn More
We report for the first time the chemical synthesis of free-standing single-crystal nanowires (NWs) of FeSi, the only transition-metal Kondo insulator and the host structure for ferromagnetic semiconductor Fe(x)Co(1-x)Si. Straight and smooth FeSi nanowires are produced on silicon substrates covered with a thin layer of silicon oxide through the(More)
We demonstrate how the orientation and ordering of DNA bases in ultrahigh vacuum (UHV) and ambient environments can be determined using complementary spectroscopic methods. Near-edge X-ray absorption fine structure (NEXAFS) with fluorescence detection, X-ray photoelectron (XPS), and Fourier transform infrared (FTIR) spectroscopies are used to quantify the(More)
We report the synthesis, structural characterization, and electrical transport properties of free-standing single-crystal CoSi nanowires synthesized via a single-source precursor route. Nanowires with diameters of 10-150 nm and lengths of greater than 10 mum were synthesized through the chemical vapor deposition of Co(SiCl(3))(CO)(4) onto silicon substrates(More)
It has been proposed that the Si(557)-Au surface exhibits spin-charge separation in a one-dimensional electron liquid. Two narrowly spaced bands are found which exhibit a well-defined splitting at the Fermi level. That is incompatible with the assignment to a spinon-holon pair in a Luttinger liquid. Instead, we propose that the two bands are associated with(More)
A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of > or =1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The(More)
The structure of the Au/Si(557) surface is determined from three-dimensional x-ray diffraction measurements, which directly mandate a single Au atom per unit cell. We use a "heavy atom" method in which the Au atom images the rest of the structure. Au is found to substitute for a row of first-layer Si atoms in the middle of the terrace, which then(More)
Linear arrays of 3 nm wide Fe stripes with 15 nm spacing are fabricated by self-assembly. They are formed by photolysis of ferrocene that is selectively adsorbed between CaF2 stripes. An ultraviolet nitrogen laser removes the organic ligands from ferrocene. Arrays of CaF2 stripes serve as masks, which are self-assembled on a stepped Si~111! surface.(More)
Polarization-dependent near edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to determine the ordering of octadecyltrichlorosilane (OTS) molecules in self-assembled (SA) films on Si/SiOx. Coverages of adsorbed material for different SA films were determined by integration of the NEXAFS signal due entirely to the C 1s absorption. The(More)
The influence of in-plane biaxial strain on the conduction bands of Si is explored using elastically strained Si(001) nanomembranes and high-resolution x-ray absorption measurements with electron yield detection. The strain-induced splitting of the conduction band minimum and the energy shifts of two higher conduction bands near L1 and L3 are clearly(More)
A reversible structural transition is observed on Si(553)-Au by scanning tunneling microscopy, triggered by electrons injected from the tip into the surface. The periodicity of atomic chains near the step edges changes from the 1×3 ground state to a 1×2 excited state with increasing tunneling current. The threshold current for this transition is reduced at(More)