Learn More
1. The contribution of syringeal muscles to controlling the phonology of song was studied by recording bilateral airflow, subsyringeal air sac pressure, electromyograms (EMGs) of six syringeal muscles, and vocal output in spontaneously singing brown thrashers (Toxostoma rufum). 2. EMG activity in musculus syringealis ventralis (vS), the largest syringeal(More)
1. The role of syringeal muscles in song production, particularly in regulating airflow through the syrinx, was studied in singing brown thrashers (Toxostoma rufum). In nine individuals, muscle activity was recorded electromyographically together with bilateral syringeal airflow, subsyringeal air sac pressure, and vocal output. 2. Dorsal muscles, m.(More)
Birdsong requires complex learned motor skills involving the coordination of respiratory, vocal organ and craniomandibular muscle groups. Recent studies have added to our understanding of how these vocal subsystems function and interact during song production. The respiratory rhythm determines the temporal pattern of song. Sound is produced during(More)
The metabolic cost of birdsong production has not been studied in detail but is of importance in our understanding of how selective pressures shape song behavior. We measured rates of oxygen consumption during song in three songbird species, zebra finches (Taeniopygia guttata), Waterslager canaries (Serinus canaria) and European starlings (Sturnus(More)
The in situ biomechanics of the vocal organ, the syrinx, was studied in anesthetized pigeons using fiberoptic instruments. The role of syringeal muscles was determined by electrical stimulation, and phonation was induced by injecting gas into the subsyringeal air sacs. This study presents the first direct observations of the biomechanical processes that(More)
The physical mechanisms of sound generation in the vocal organ, the syrinx, of songbirds have been investigated mostly with indirect methods. Recent direct endoscopic observation identified vibrations of the labia as the principal sound source. This model suggests sound generation in a pulse-tone mechanism similar to human phonation with the labia forming a(More)
Our current understanding of the sound-generating mechanism in the songbird vocal organ, the syrinx, is based on indirect evidence and theoretical treatments. The classical avian model of sound production postulates that the medial tympaniform membranes (MTM) are the principal sound generators. We tested the role of the MTM in sound generation and studied(More)
In this work we present an experimental validation of a recently proposed model for the production of birdsongs. We have previously observed that driving the model with simple functions of time, which represent tensions in vocal muscles, produces a wide variety of sounds resembling birdsongs. In this work we drive the model with functions whose time(More)
The beaks of Darwin's finches and other birds are among the best known examples of adaptive evolution. Beak morphology is usually interpreted in relation to its critical role in feeding. However, the beak also plays an important role in preening, which is the first line of defence against harmful ectoparasites such as feather lice, fleas, bugs, flies, ticks(More)
In brown thrashers (Toxostoma rufum) and grey catbirds (Dumetella carolinensis) neither side of the syrinx has a consistently dominant role in song production. During song, the two sides operate independently, but in close cooperation with each other and with the respiratory muscles which are capable of adjusting expiratory effort to maintain a constant(More)