Learn More
A common feature shared by myosin-binding proteins from a wide variety of species is the presence of a variable number of related internal motifs homologous to either the Ig C2 or the fibronectin (Fn) type III repeats. Despite interest in the potential function of these motifs, no group has clearly demonstrated a function for these sequences in muscle,(More)
Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography(More)
Reductionist in vitro model systems which mimic specific extracellular matrix functions in a highly controlled manner, termed artificial extracellular matrices (aECM), have increasingly been used to elucidate the role of cell-ECM interactions in regulating cell fate. To better understand the interplay of biophysical and biochemical effectors in controlling(More)
This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation(More)
these topologies are difficult to fabricate with other litho-graphic techniques, such as photolithography. [10] Combined with our previous work, [5] which described methods to mold patterned composites of gels, the techniques discussed here allow the formation of structures that incorporate distinct populations of cells within or on the surface of a gel.(More)
Semi-synthetic, proteolytically degradable polymer hydrogels have proven effective as scaffolds to augment bone and skin regeneration in animals. However, high costs due to expensive peptide building blocks pose a significant hurdle towards broad clinical usage of these materials. Here we demonstrate that tri-amino acid peptides bearing lysine (or(More)
N-methyl pyrrolidone (NMP), a small bioactive molecule, stimulates bone formation and inhibits osteoclast differentiation and bone resorption. The present study was aimed to evaluate the anti-inflammatory potentials of NMP on the inflammatory process and the underlying molecular mechanisms in RAW264.7 macrophages. RAW264.7 macrophages and mouse primary bone(More)
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or(More)
To achieve an easily established, safe, and reproducible animal model for the study of heterotopic bone formation around vessels, a small animal series using New Zealand White rabbits was performed. Three different dosages of recombinant human bone morphogenic protein (rhBMP-2) carried by fibrin matrix were tested. A guided tissue regeneration (GTR)(More)
Current clinically used delivery methods for bone morphogenetic proteins (BMPs) are collagen based and require large concentrations that can lead to dangerous side effects. Fibrin hydrogels can serve as osteoinductive bone substitute materials in non-load bearing bone defects in combination with BMPs. Two strategies to even further optimize such a fibrin(More)