Learn More
Synthetic hydrogels have been molecularly engineered to mimic the invasive characteristics of native provisional extracellular matrices: a combination of integrin-binding sites and substrates for matrix metalloproteinases (MMP) was required to render the networks degradable and invasive by cells via cell-secreted MMPs. Degradation of gels was engineered(More)
A common feature shared by myosin-binding proteins from a wide variety of species is the presence of a variable number of related internal motifs homologous to either the Ig C2 or the fibronectin (Fn) type III repeats. Despite interest in the potential function of these motifs, no group has clearly demonstrated a function for these sequences in muscle,(More)
We have engineered synthetic poly(ethylene glycol) (PEG)-based hydrogels as cell-ingrowth matrices for in situ bone regeneration. These networks contain a combination of pendant oligopeptide ligands for cell adhesion (RGDSP) and substrates for matrix metalloproteinase (MMP) as linkers between PEG chains. Primary human fibroblasts were shown to migrate(More)
Here we show that scavenger receptor class B type I is present in the small-intestine brush border membrane where it facilitates the uptake of dietary cholesterol from either bile salt micelles or phospholipid vesicles. This receptor can also function as a port for several additional classes of lipids, including cholesteryl esters, triacylglycerols, and(More)
Cell interactions with the extracellular matrix play important roles in guiding tissue morphogenesis. The matrix stimulates cells to influence such things as differentiation and the cells actively remodel the matrix via local proteolytic activity. We have designed synthetic hydrogel networks that participate in this interplay: They signal cells via bound(More)
We present polymeric hydrogel biomaterials that are biomimetic both in their synthesis and degradation. The design of oligopeptide building blocks with dual enzymatic responsiveness allows us to create polymer networks that are formed and functionalized via enzymatic reactions and are degradable via other enzymatic reactions, both occurring under(More)
Most growth factors naturally involved in development and regeneration demonstrate strong binding to the extracellular matrix and are retained there until being locally mobilized by cells. In spite of this feedback between cell activity and growth factor mobilization in the extracellular matrix, this approach has not been extensively explored in therapeutic(More)
OBJECTIVE To report the results of the treatment of nonunions with nonglycosylated recombinant human bone morphogenetic protein-2 (nglBMP-2) delivered from a designed fibrin matrix. STUDY DESIGN Experimental trial in rodents and prospective clinical study in dogs and cats with nonunion fractures. ANIMALS Twenty adult female, albino, Sprague-Dawley rats;(More)
Reductionist in vitro model systems which mimic specific extracellular matrix functions in a highly controlled manner, termed artificial extracellular matrices (aECM), have increasingly been used to elucidate the role of cell-ECM interactions in regulating cell fate. To better understand the interplay of biophysical and biochemical effectors in controlling(More)
The molecular engineering of cell-instructive artificial extracellular matrices is a powerful means to control cell behavior and enable complex processes of tissue formation and regeneration. This work reports on a novel method to produce such smart biomaterials by recapitulating the crosslinking chemistry and the biomolecular characteristics of the(More)