#### Filter Results:

#### Publication Year

2007

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

The dissociation number of a graph G is the number of vertices in a maximum size induced subgraph of G with vertex degree at most 1. A k-path vertex cover of a graph G is a subset S of vertices of G such that every path of order k in G contains at least one vertex from S. The minimum 3-path vertex cover is a dual problem to the dissociation number. For this… (More)

A subset S of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. Denote by ψ k (G) the minimum cardinality of a k-path vertex cover in G. It is shown that the problem of determining ψ k (G) is NP-hard for each k ≥ 2, while for trees the problem can be solved in linear time. We investigate… (More)

We show that every (sub)cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978 which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid to random cubic graphs as well as it improves existing lower bounds on the maximum cut in cubic graphs with large… (More)

We show that for every cubic graph G with sufficiently large girth there exists a probability distribution on edge-cuts of G such that each edge is in a randomly chosen cut with probability at least 0.88672. This implies that G contains an edge-cut of size at least 1.33008n, where n is the number of vertices of G, and has fractional cut covering number at… (More)

Reed conjectured that for every ε > 0 and every integer ∆, there exists g such that the fractional total chromatic number of every graph with maximum degree ∆ and girth at least g is at most ∆ + 1 + ε. The conjecture was proven to be true when ∆ = 3 or ∆ is even. We settle the conjecture by proving it for the remaining cases.

The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth has an analytic limit object called a limit modeling. We establish the matroid… (More)

An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that ∆(G) + 2 colors suffice for an acyclic edge coloring of every graph G [6]. The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is ∆ + 12 [2]. In… (More)