Learn More
Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present(More)
Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly(More)
Tissue-engineered constructs designed to treat large cartilage defects or osteoarthritic lesions may be exposed to significant mechanical loading as well as an inflammatory environment upon implantation in an injured or diseased joint. We hypothesized that a three-dimensionally (3D) woven poly(ε-caprolactone) (PCL) scaffold seeded with bone marrow-derived(More)
BACKGROUND Cell-based therapies such as tissue engineering provide promising therapeutic possibilities to enhance the repair or regeneration of damaged or diseased tissues but are dependent on the availability and controlled manipulation of appropriate cell sources. QUESTIONS/PURPOSES The goal of this study was to test the hypothesis that adult(More)
OBJECTIVE Injury or removal of the knee meniscus leads to progressive joint degeneration, and current surgical therapies for meniscal tears seek to maximally preserve meniscal structure and function. However, the factors that influence intrinsic repair of the meniscus are not well understood. The goal of this study was to investigate the capacity of(More)
Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were combined with adult human mesenchymal stem cells (hMSC) to engineer mechanically functional cartilage constructs in vitro. The specific objectives were to: (i) produce PCL scaffolds with cartilage-like mechanical properties, (ii) demonstrate that hMSCs formed cartilage after 21 days(More)
The successful replacement of large-scale cartilage defects or osteoarthritic lesions using tissue-engineering approaches will likely require composite biomaterial scaffolds that have biomimetic mechanical properties and can provide cell-instructive cues to control the growth and differentiation of embedded stem or progenitor cells. This study describes a(More)
OBJECTIVE To examine the hypotheses that increasing concentrations of interleukin-1 (IL-1) or tumor necrosis factor alpha (TNFalpha) inhibit the integrative repair of the knee meniscus in an in vitro model system, and that inhibitors of these cytokines will enhance repair. METHODS Explants (8 mm in diameter) were harvested from porcine medial menisci. To(More)
BACKGROUND The menisci are essential intra-articular structures that contribute to knee function, and meniscal injury or loss is associated with joint degeneration. Tears of the outer vascularized zone have a greater potential for repair than do tears in the inner avascular region. OBJECTIVE AND HYPOTHESIS Develop an in vitro explant model to examine the(More)
The development of synthetic biomaterials that possess mechanical properties that mimic those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of(More)