Franklin L. Marquezino

Learn More
Several research groups are giving special attention to quantum walks recently, because this research area have been used with success in the development of new efficient quantum algorithms. A general simulator of quantum walks is very important for the development of this area, since it allows the researchers to focus on the mathematical and physical(More)
The spatial search problem consists in minimizing the number of steps required to find a given site in a network, under the restriction that only oracle queries or translations to neighboring sites are allowed. We propose a quantum algorithm for the spatial search problem on a honeycomb lattice with N sites and torus-like boundary conditions. The search(More)
—We propose the theory of Cayley graphs as a framework to analyse gate counts and quantum costs resulting from reversible circuit synthesis. Several methods have been proposed in the reversible logic synthesis literature by considering different libraries whose gates are associated to the generating sets of certain Cayley graphs. In a Cayley graph, the(More)
The “abstract search algorithm” is a well known quantum method to find a marked vertex in a graph. It has been applied with success to searching algorithms for the hypercube and the two-dimensional grid. In this work we provide an example for which that method fails to provide the best algorithm in terms of time complexity. We analyze search(More)
We present the detailed process of converting the classical Fourier Transform algorithm into the quantum one by using QR decomposition. This provides an example of a technique for building quantum algorithms using classical ones. The Quantum Fourier Transform is one of the most important quantum subroutines known at present, used in most algorithms that(More)