Learn More
The gene family of organellar-type Ca2+ transport ATPases consists of three members. SERCA1 is expressed exclusively in fast skeletal muscle; SERCA2 is ubiquitously expressed, whereas SERCA3 is considered to be mainly expressed in cells of the hematopoietic lineage and in some epithelial cells. In the brain, the organellar-type Ca2+ transport ATPases are(More)
AIMS Type II diabetes, often associated with abdominal obesity, frequently leads to heart failure. Clinical and epidemiological evidence suggests that supplemental dyslipidaemia and hypertension, as clustered in the metabolic syndrome, aggravate the cardiovascular outcome. The differential impact of type II diabetes and the metabolic syndrome on left(More)
The transcript levels of the myogenic regulatory factors (myoD, myf5, myogenin and MRF4) were measured by RT PCR in rat soleus (slow) and EDL (fast) muscles which were regenerating from notexin-induced necrosis. Some muscle fibers in the EDL were more resistant to the toxin, therefore the necrosis and the dominance of myoblasts were delayed for two days in(More)
Manganese is a vital element and cofactor of many key enzymes, but it is toxic at high levels, causing pronounced disturbances in the mammalian brain. Magnetic resonance imaging (MRI) studies using manganese ions as a paramagnetic contrast agent are often limited by the neurotoxicity of Mn(2+) . In this work, we have explored a new in vivo model to study(More)
Presenilin (PSEN) deficiency is accompanied by accumulation of endosomes and autophagosomes, likely caused by impaired endo-lysosomal fusion. Recently, Lee et al. (2010. Cell. doi: http://dx.doi.org/10.1016/j.cell.2010.05.008) attributed this phenomenon to PSEN1 enabling the transport of mature V0a1 subunits of the vacuolar ATPase (V-ATPase) to lysosomes.(More)
Non-mitochondrial intracellular Ca2+ stores contain both thapsigargin-sensitive sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and thapsigargin-insensitive secretory-pathway Ca2+-ATPases (SPCA1). We now have studied the Ca2+-release properties of the compartments associated with these pumps in intact, i.e. non-permeabilized, cells of different origin(More)
Ca2+ and Mn2+ play an important role in many events in the nervous system, ranging from neural morphogenesis to neurodegeneration. As part of the homeostatic control of these ions, the Secretory Pathway Ca2+-ATPase isoform 1 (SPCA1) mediates the accumulation of Ca2+ or Mn2+ with high affinity into Golgi reservoirs. This SPCA1 represents a relatively(More)
Cytosolic Ca(2+) oscillations can be due to cycles of release and re-uptake of internally stored Ca(2+). To investigate the nature of these Ca(2+) stores, we expressed the Pmr1 Ca(2+) pump of Caenorhabditis elegans in COS-1 cells and pretreated the cells with thapsigargin to prevent Ca(2+) uptake by the sarco(endo)plasmic reticulum Ca(2+)-ATPase. Pmr1(More)
Neural cell differentiation involves a complex regulatory signal transduction network in which Ca(2+) ions and the secretory pathway play pivotal roles. The secretory pathway Ca(2+)-ATPase isoform 1 (SPCA1) is found in the Golgi apparatus where it is actively involved in the transport of Ca(2+) or Mn(2+) from the cytosol to the Golgi lumen. Its expression(More)
Extracellular agonists mobilize Ca2+ from SERCA-comprising intracellular Ca2+ stores located in both the Golgi apparatus and the endoplasmic reticulum. Ca2+ release from both these compartments was studied in HeLa cells stably expressing the luminescent Ca2+ indicator aequorin specifically targeted to these compartments. Changes in lumenal [Ca2+] as(More)