Learn More
In polarized epithelial cells [Ca2+]i waves are initiated in discrete regions and propagate through the cytosol. The structural basis for these compartmentalized and coordinated events are not well understood. In the present study we used a combination of [Ca2+]i imaging at high temporal resolution, recording of Ca2+-activated Cl- current, and(More)
Intracellular Ca(2+)-transport ATPases exert a pivotal role in the endoplasmic reticulum and in the compartments of the cellular secretory pathway by maintaining a sufficiently high lumenal Ca(2+) (and Mn(2+)) concentration in these compartments required for an impressive number of vastly different cell functions. At the same time this lumenal Ca(2+)(More)
The present study was aimed at localization of plasma membrane (PMCA) and intracellular (SERCA) Ca2+ pumps and characterizing their role in initiation and propagation of Ca2+ waves. Specific and polarized expression of Ca2+ pumps was observed in all epithelial cells examined. Immunolocalization revealed expression of PMCA in both the basolateral and luminal(More)
Two sarcoendoplasmic reticulum Ca(2+)-ATPases, SERCA3 and SERCA2b, are expressed in pancreatic islets. Immunocytochemistry showed that SERCA3 is restricted to beta-cells in the mouse pancreas. Control and SERCA3-deficient mice were used to evaluate the role of SERCA3 in beta-cell cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) regulation, insulin(More)
The relative mRNA levels corresponding to the different sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase isoforms (SERCA1a, SERCA1b, SERCA2a, SERCA2b and SERCA3) were measured by reverse transcriptase-PCR in rat soleus muscles regenerating after notexin-induced necrosis. The succession of appearance of the different types of SERCA mRNA species in(More)
The secretory-pathway Ca2+-ATPases (SPCAs) represent a recently recognized family of phosphorylation-type ATPases that supply the lumen of the Golgi apparatus with Ca2+ and Mn2+ needed for the normal functioning of this structure. Mutations of the human SPCA1 gene (ATP2C1) cause Hailey-Hailey disease, an autosomal dominant skin disorder in which(More)
Studies of intact smooth muscle have suggested that its anomalous aerobic lactate production may reflect an intracellular compartmentation of glycolytic enzyme cascades designed to support specific exergonic processes. In particular, we have postulated a membrane-associated glycolytic cascade that preferentially supports the ATP requirements of membrane(More)
Myostatin is a newly described member of the TGF-beta superfamily acting as a secreted negative regulator of skeletal muscle mass in several species, but whose mode of action remains largely unknown. In the present work, we followed the myostatin mRNA and protein levels in rat soleus and extensor digitorum longus (EDL) muscles regenerating in vivo from(More)
An organellar-type of Ca2+ pump formerly detected by means of its phosphoprotein intermediate in platelets and in lymphoid cells, and which runs in acid gels at 97 kDa, is now characterized as sarco/endoplasmic reticulum Ca2+ATPase 3 (SERCA3). SERCA3 is co-expressed in these cells along with the housekeeping SERCA2b. This conclusion is based on the(More)
Accumulation of Ca(2+) into the Golgi apparatus is mediated by sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) and by secretory pathway Ca(2+)-ATPases (SPCAs). Mammals and birds express in addition to the housekeeping SPCA1 (human gene name ATP2C1, cytogenetic position 3q22.1) a homologous SPCA2 isoform (human gene name ATP2C2, cytogenetic position(More)