Frank Vandenabeele

Learn More
Human spinal dura and arachnoid, obtained during neurosurgical operations, were studied by transmission electron microscopy. The ultrastructure of spinal meninges largely conformed to the morphology of the cranial meninges, but some minor differences were detected. The dura was composed of an outermost loosely arranged fibroelastic layer, a middle basically(More)
We have demonstrated previously that adult human synovial membrane-derived mesenchymal stem cells (hSM-MSCs) have myogenic potential in vitro (De Bari, C., F. Dell'Accio, P. Tylzanowski, and F.P. Luyten. 2001. Arthritis Rheum. 44:1928-1942). In the present study, we have characterized their myogenic differentiation in a nude mouse model of skeletal muscle(More)
Oligodendrocytes, the myelin-forming cells of the central nervous system, are the target of pathogenic immune responses in multiple sclerosis. Primary cultures of human oligodendrocytes have been used to unravel the cellular and molecular mechanisms of immune-mediated injury of oligodendrocytes. However, these studies are hampered by the limited(More)
In multiple sclerosis (MS), damage to oligodendrocytes is believed to be caused by an aberrant immune response initiated by autoreactive T cells. Increasing evidence indicates that these T cells are not exclusively detrimental but might also exert protective effects. We report for the first time that myelin-reactive T-cell clones from eight MS patients(More)
A simple method is described to establish primary cultures of kidney proximal tubule cells (PTC) on membranes. The permeable membranes represent a unique culture surface, allowing a high degree of differentiation since both apical and basolateral membranes are accessible for medium. Proximal tubule (PT) segments from collagenase-digested mouse renal(More)
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Myelin and oligodendrocytes are considered the major targets of injury caused by a cell-mediated immune response. There is circumstantial evidence that proinflammatory cytokines like tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) could have(More)
AIMS Rapid and extensive activation of astrocytes occurs subsequent to many forms of central nervous system (CNS) injury. Recent studies have revealed that the expression profile of reactive astrocytes comprises antigens present during astrocyte development. Elevated levels of the injury-related cytokine transforming growth factor-beta 1 (TGF-beta1)(More)
Radial glial cells are transiently bipolar cells in the developing central nervous system, best known for their role in guiding migrating neurons. The aim of the present study was to investigate phenotypic characteristics of these bipolar precursor cells in a mixed glial cell culture system derived from the rat neonatal spinal cord. Morphological(More)
Oligodendrocytes are glial cells responsible for the synthesis and maintenance of myelin in the central nervous system (CNS). Oligodendrocytes are vulnerable to damage occurring in a variety of neurological diseases. Understanding oligodendrocyte biology is crucial for the dissemination of de- and remyelination mechanisms. The goal of the present study is(More)
The synovial membrane (SM) is a source of multipotent mesenchymal stem cells (MSCs), which appeared microscopically to be a relatively homogeneous population of fibroblast-like cells (FCs) in culture (De Bari et al., 2001). The aim of this study was to investigate phenotypic characteristics of the SM-derived FCs (SD-FCs) that could elucidate their origin(More)