Learn More
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less(More)
Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca(2+) is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction.(More)
Human bone marrow stromal cells (hBMSCs) bear tremendous clinical potential due to their immunomodulatory properties in transplantation settings and their contribution to tissue regeneration. In fact, they are among the most promising types of stem-like cells for therapeutic applications and are the subject of intense research. However, the clinical use of(More)
Cardiomyocytes generated from embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells are suggested for repopulation of destroyed myocardium. Because contractile properties are crucial for functional regeneration, we compared cardiomyocytes differentiated from ES cells (ESC-CMs) and iPS cells (iPS-CMs). Native myocardium served as control.(More)
The synthesis of nitric oxide (NO) in the circulation has been attributed exclusively to the vascular endothelium, especially to endothelial cells. Recently, it has been demonstrated that red blood cells (RBCs) express the endothelial NOS isoform (eNOS). In addition, RBCs have been assumed to metabolize large quantities of NO due to their high content of(More)
Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals(More)
Exercise induces alterations of the extracellular matrix (ECM), e.g. by an increased release of endostatin or by regulation of matrix metalloproteases (MMP)-2/-9, and cathepsin L. To investigate the influence of training status on exercise-induced ECM-processing of angiogenic molecules, alterations of endostatin-, MMP-2, and MMP-9 plasma concentrations(More)
PURPOSE Acute ischemic injury is a strong inductor of cardiac remodelling, resulting in structural changes of the extracellular matrix (ECM) and basement membrane (BM). In a large animal model of ischemia-reperfusion (I/R) we investigated the post-ischemic liberation of the collagen-IV-fragments Tumstatin (TUM; 28 kDa-fragment of collagen-IV-alpha-3),(More)
In the last fifteen years different extracellular matrix proteins and cleavage products have been identified. These molecules possess the ability to regulate vascular development, repair and function. However, the concept is still inconsistent and only partially understood. In this review, we will focus on angiogenesis regulation by extracellular matrix(More)
Human red blood cells (RBC) express an active and functional endothelial-like nitric oxide (NO) synthase (RBC-NOS). We report studies on RBC-NOS activity in sickle cell anaemia (SCA), a genetic disease characterized by decreased RBC deformability and vascular dysfunction. Total RBC-NOS content was not significantly different in SCA patients compared to(More)