Learn More
The production and use of nanoparticles (NP) has steadily increased within the last decade; however, knowledge about risks of NP to human health and ecosystems is still scarce. Common knowledge concerning NP effects on freshwater organisms is largely limited to standard short-term (≤48 h) toxicity tests, which lack both NP fate characterization and an(More)
Studies assessing the acute and chronic toxicity of silver nanoparticle (nAg) materials rarely consider potential implications of environmental variables. In order to increase our understanding in this respect, we investigated the acute and chronic effects of various nAg materials on Daphnia magna. Thereby, different nanoparticle size classes with a citrate(More)
The increasing use of titanium dioxide nanoparticles (nTiO(2)) inevitably results in their release into the environment, raising concerns about potential adverse effects in wildlife. By following standard test protocols, several studies investigated the ecotoxicity of nTiO(2) among others to Daphnia magna. These studies indicated a large variability -(More)
Advanced treatment techniques, like ozone, activated carbon and TiO(2) in combination with UV, are proposed to improve removal efficiency of micropollutants during wastewater treatment. In a meta-analysis of peer-reviewed literature, we found significantly reduced overall ecotoxicity of municipal wastewaters treated with either ozone (n=667) or activated(More)
The nanoparticle industry is expected to become a trillion dollar business in the near future. Therefore, the unintentional introduction of nanoparticles into the environment is increasingly likely. However, currently applied risk-assessment practices require further adaptation to accommodate the intrinsic nature of engineered nanoparticles. Combining a(More)
A 125-mile reach of the South River, Virginia, was contaminated with mercury during the first half of the 20th century. As increased concentrations of mercury have persisted, researchers have carefully studied its distribution in the river biota and estimated associated risks. The present study evaluated the influence of mercury on feeding rate and uptake(More)
Titanium dioxide nanoparticles (nTiO₂) form reactive oxygen species (ROS) under irradiation by ultraviolet light (UV). This known photocatalytic activity may finally affect the presence and toxicity of organic environmental chemicals, which have not yet been studied at ambient UV intensity. The authors used a three-factorial design to evaluate the(More)
Interactions with environmental parameters may alter the ecotoxicity of nanoparticles. The present study therefore assessed the (in)direct effects of nanoparticulate titanium dioxide (nano-TiO(2)) towards Gammarus fossarum, considering nano-TiO(2)'s photocatalytic properties at ambient UV-intensities. Gammarids' habitat selection was investigated using its(More)
Although nanoparticle production and application increases continuously, their implications in species interactions, especially in combination with other environmental stressors, are rarely assessed. Therefore, the present study investigated the influence of 2 mg/L titanium dioxide nanoparticles (nTiO2; <100 nm) on the interaction between the prey(More)
Unintentionally released titanium dioxide nanoparticles (nTiO2) may co-occur in aquatic environments together with other stressors, such as, metal ions. The effects of P25-nTiO2 on the toxicity and uptake of the elements silver (Ag), arsenic (As) and copper (Cu) were assessed by applying a factorial test design. The test design consisted of two(More)