Learn More
This paper introduces a novel method for ultrasound calibration for both spatial and temporal parameters. The main advantage of this method is that it does not require a phantom, which is usually expensive to fabricate. Furthermore, the method does not require extensive image processing. For spatial calibration, we solve an optimization problem established(More)
We propose a Bayesian formulation for coupled surface evolutions and apply it to the segmentation of the prostate and the bladder in CT images. This is of great interest to the radiotherapy treatment process, where an accurate contouring of the prostate and its neighboring organs is needed. A purely data based approach fails, because the prostate boundary(More)
PURPOSE To evaluate an augmented reality (AR) system in combination with a 1.5-T closed-bore magnetic resonance (MR) imager as a navigation tool for needle biopsies. MATERIALS AND METHODS The experimental protocol had institutional animal care and use committee approval. Seventy biopsies were performed in phantoms by using 20 tube targets, each with a(More)
This paper presents initial results from an ongoing work to calibrate optical see-through head-mounted displays (HMDs). We have developed a method to calibrate stereoscopic optical see-through HMDs based on the 3D alignment of a target in the physical world with a virtual object in user’s view. This is an extension of the Single Point Active Alignment(More)
Augmented Reality is an emerging technology that seeks to enhance a user’s view by overlaying graphical information. We developed a prototype AR system geared for medical applications. It is built around a stereoscopic head-mounted display of the video-see-through variety. The newest generation of this prototype system exhibits high performance on a(More)
This paper presents a method for registering 3D intracardiac echo (ICE) to pre-operative images. A magnetic tracking sensor is integrated on the ICE catheter tip to provide the 3D location and orientation. The user guides the catheter into the patient heart to acquire a series of ultrasound images covering the anatomy of the heart chambers. An automatic(More)
In this paper, we propose a computationally efficient method for medical image registration. The centerpiece of the approach is to reduce the dimensions of each image via a projection operation. The two sequences of projection images corresponding to each image are used for estimating the registration parameters. Depending upon how the projection geometry(More)