Learn More
Analysis of mitochondrial function is central to the study of intracellular energy metabolism, mechanisms of cell death and pathophysiology of a variety of human diseases, including myopathies, neurodegenerative diseases and cancer. However, important properties of mitochondria differ in vivo and in vitro. Here, we describe a protocol for the analysis of(More)
The conditions of treatment of human skeletal muscle fibers from M. vastus lateralis with saponin were optimized to achieve complete permeabilization of cell membrane at intact mitochondrial oxidative phosphorylation. After 30 min of incubation with saponin all lactate dehydrogenase, 50% of creatine kinase, 30% of adenylate kinase and less than 20% of(More)
Macromolecules as components of the physiological mitochondrial environment were substituted by addition of 10% dextran 70. This led to a significant reduction of the space between the two envelope and the crista membranes and to an increase of contact sites as observed by freeze-fracture analysis. The preferential binding of hexokinase in these sites was(More)
To investigate whether or not the mitochondrial intermembrane space together with the extramitochondrial space form a homogeneous pool for adenine nucleotides, rat-heart mitochondria were studied in reconstituted systems with pyruvate kinase and ADP-producing enzymes with varied localization. In the hexokinase system, ADP is produced extramitochondrially by(More)
Saponin-skinned human muscle fibers from M. vastus lateralis were immobilized in a quartz capillary to detect the fluorescence changes of NAD(P)H and of fluorescent flavoproteins. To get sufficient intense fluorescence signals from a small amount of muscle tissue the NAD(P)H fluorescence was excited by means of an HeCd laser at 325 nm and the flavoprotein(More)
The flux control coefficients of adenine nucleotide translocase, the phosphate transporter, and H(+)-ATPase were determined in rat skeletal muscle mitochondria using glutamate plus malate as substrates and soluble F1-ATPase as load enzyme. It was observed that the flux control coefficients of adenine nucleotide translocase, H(+)-ATPase, and the load enzyme(More)
BACKGROUND Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and(More)
Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix(More)
The influence of the mitochondrial outer membrane and that of the binding of creatine kinase to the mitochondrial inner membrane on the compartmentation of adenine nucleotides in the intermembrane space of rat heart mitochondria were investigated under conditions of maximal rates of mitochondrial creatine kinase. To this end, experiments were performed in(More)