Frank M Laferla

Learn More
The neuropathological correlates of Alzheimer's disease (AD) include amyloid-beta (Abeta) plaques and neurofibrillary tangles. To study the interaction between Abeta and tau and their effect on synaptic function, we derived a triple-transgenic model (3xTg-AD) harboring PS1(M146V), APP(Swe), and tau(P301L) transgenes. Rather than crossing independent lines,(More)
Amyloid-beta (Abeta) containing plaques and tau-laden neurofibrillary tangles are the defining neuropathological features of Alzheimer's disease (AD). To better mimic this neuropathology, we generated a novel triple transgenic model of AD (3xTg-AD) harboring three mutant genes: beta-amyloid precursor protein (betaAPPSwe), presenilin-1 (PS1M146V), and(More)
Progressive memory loss and cognitive dysfunction are the hallmark clinical features of Alzheimer's disease (AD). Identifying the molecular triggers for the onset of AD-related cognitive decline presently requires the use of suitable animal models, such as the 3xTg-AD mice, which develop both amyloid and tangle pathology. Here, we characterize the onset of(More)
Calcium modulates many neural processes, including synaptic plasticity and apoptosis. Dysregulation of intracellular calcium signalling has been implicated in the pathogenesis of Alzheimer's disease. Increased intracellular calcium elicits the characteristic lesions of this disorder, including the accumulation of amyloid-β, the hyperphosphorylation of TAU(More)
Neural stem cell (NSC) transplantation represents an unexplored approach for treating neurodegenerative disorders associated with cognitive decline such as Alzheimer disease (AD). Here, we used aged triple transgenic mice (3xTg-AD) that express pathogenic forms of amyloid precursor protein, presenilin, and tau to investigate the effect of neural stem cell(More)
The primal role that the amyloid-beta (Abeta) peptide has in the development of Alzheimer's disease is now almost universally accepted. It is also well recognized that Abeta exists in multiple assembly states, which have different physiological or pathophysiological effects. Although the classical view is that Abeta is deposited extracellularly, emerging(More)
Neurofibrillary tangles (NFTs) are composed of abnormal aggregates of the cytoskeletal protein tau. Together with amyloid beta (Abeta) plaques and neuronal and synaptic loss, NFTs constitute the primary pathological hallmarks of Alzheimer disease (AD). Recent evidence also suggests that caspases are activated early in the progression of AD and may play a(More)
Amyloid-beta (Abeta) plaques and neurofibrillary tangles are the hallmark neuropathological lesions of Alzheimer's disease (AD). Using a triple transgenic model (3xTg-AD) that develops both lesions in AD-relevant brain regions, we determined the consequence of Abeta clearance on the development of tau pathology. Here we show that Abeta immunotherapy reduces(More)
Various environmental and genetic factors influence the onset and progression of Alzheimer's disease (AD). Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which controls circulating levels of glucocorticoid hormones, occurs early in AD, resulting in increased cortisol levels. Disturbances of the HPA axis have been associated with memory(More)
We investigated the therapeutic efficacy of the selective M1 muscarinic agonist AF267B in the 3xTg-AD model of Alzheimer disease. AF267B administration rescued the cognitive deficits in a spatial task but not contextual fear conditioning. The effect of AF267B on cognition predicted the neuropathological outcome, as both the Abeta and tau pathologies were(More)